Mirtazapine (MIR) and two of its main metabolites, namely, 8-hydroxymirtazapine and N-desmethylmirtazapine, were separated in totheir enantiomers by nanoLC in a laboratory-made fused-silica capillary column (75 micron ID) packed with a vancomycinmodified silica stationary phase. The simultaneous separation of the three couples of the studied enantiomers was achieved in less than 33 min, using an experimentally optimized mobile phase delivered in the isocratic mode. Optimization of the mobile phase composition was achieved by testing the influence of the buffer pH and concentration, the water concentration, the organic modifier type and concentration, and on the retention and resolution of the analytes. The optimum mobile-phase composition contained 500 mM ammonium acetate pH 4.5/water/MeOH/MeCN, 1:14:40:45 v/v/v/v. Using a UV detector at 205 nm, the method was validated studying several experimental parameters such as LOD and LOQ, intraday and interday repeatability, and linearity. Good results were achieved: LOD and LOQ were in the range 515 and 1040 microg/mL, respectively (the highest value was obtained for the DEMIR enantiomers); correlation coefficients, 0.99930.9999; the intraday and interday precision was acceptable (RSD a 2%) using an internal standard. The method was tested for the separation of the studied enantiomers in an extracted (solid-phase) serum sample spiked with standard racemic mixture of MIR and its two metabolites. Finally, the nanoLC system was connected to a mass spectrometer through a nanoelectrospray interface and the MS, MS2, and MS3 spectra were acquired showing the potential of the system used for characterization and identification of the separated analytes.
Enantiomeric separation of mirtazapine and its metabolites by nano-Liquid chromatography with UV-absorption and mass spectrometric detection.
S Fanali;Z Aturki;G DOrazio
2005
Abstract
Mirtazapine (MIR) and two of its main metabolites, namely, 8-hydroxymirtazapine and N-desmethylmirtazapine, were separated in totheir enantiomers by nanoLC in a laboratory-made fused-silica capillary column (75 micron ID) packed with a vancomycinmodified silica stationary phase. The simultaneous separation of the three couples of the studied enantiomers was achieved in less than 33 min, using an experimentally optimized mobile phase delivered in the isocratic mode. Optimization of the mobile phase composition was achieved by testing the influence of the buffer pH and concentration, the water concentration, the organic modifier type and concentration, and on the retention and resolution of the analytes. The optimum mobile-phase composition contained 500 mM ammonium acetate pH 4.5/water/MeOH/MeCN, 1:14:40:45 v/v/v/v. Using a UV detector at 205 nm, the method was validated studying several experimental parameters such as LOD and LOQ, intraday and interday repeatability, and linearity. Good results were achieved: LOD and LOQ were in the range 515 and 1040 microg/mL, respectively (the highest value was obtained for the DEMIR enantiomers); correlation coefficients, 0.99930.9999; the intraday and interday precision was acceptable (RSD a 2%) using an internal standard. The method was tested for the separation of the studied enantiomers in an extracted (solid-phase) serum sample spiked with standard racemic mixture of MIR and its two metabolites. Finally, the nanoLC system was connected to a mass spectrometer through a nanoelectrospray interface and the MS, MS2, and MS3 spectra were acquired showing the potential of the system used for characterization and identification of the separated analytes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.