Fires represents one of the main causes of environmental degradation and have an important negative impact on the landscape. Fires, in fact, strongly influenced ecological processes and compromise the ecosystems. Measurements of the post-fire damage levels over burned areas are important to quantify fire's impact on landscapes. Remote sensing and geo-statistical approaches are useful tools for the monitoring and analysis of burned areas on a regional scale, because provides reliable and rapid diagnosis of burned areas. Spatial autocorrelation statistics, such as Moran's I and Getis-Ord Local Gi index, were also used to measure and analyze dependency degree among spectral features of burned areas. This approach improves characterization of a burnt area and improves the estimate of the severity of the fire. This paper provides an application of fire severity studies describing post-fire spectral responses of fire affected vegetation to obtain a burned area map. The aim of this work is to implement a procedure, using ESA Sentinel 2 data and spatial autocorrelation statistics in a GIS open-source environment, a graphical model that analyzes the change detection of the potential burned area, as case of study Northern part of Apulia Region (Italy) was used. The burned area was delineated using the spectral indices calculated using Sentinel two images in the period July-August 2020 and using also the land use map of the area.

A Remote Sensing and Geo-Statistical Approaches to Mapping Burn Areas in Apulia Region (Southern Italy)

Nole Gabriele;Lanorte Antonio;Tucci Biagio;
2021

Abstract

Fires represents one of the main causes of environmental degradation and have an important negative impact on the landscape. Fires, in fact, strongly influenced ecological processes and compromise the ecosystems. Measurements of the post-fire damage levels over burned areas are important to quantify fire's impact on landscapes. Remote sensing and geo-statistical approaches are useful tools for the monitoring and analysis of burned areas on a regional scale, because provides reliable and rapid diagnosis of burned areas. Spatial autocorrelation statistics, such as Moran's I and Getis-Ord Local Gi index, were also used to measure and analyze dependency degree among spectral features of burned areas. This approach improves characterization of a burnt area and improves the estimate of the severity of the fire. This paper provides an application of fire severity studies describing post-fire spectral responses of fire affected vegetation to obtain a burned area map. The aim of this work is to implement a procedure, using ESA Sentinel 2 data and spatial autocorrelation statistics in a GIS open-source environment, a graphical model that analyzes the change detection of the potential burned area, as case of study Northern part of Apulia Region (Italy) was used. The burned area was delineated using the spectral indices calculated using Sentinel two images in the period July-August 2020 and using also the land use map of the area.
2021
Istituto di Metodologie per l'Analisi Ambientale - IMAA
978-3-030-86978-6
Fire perimeter
Burn severity
Delta NBR index
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/447891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact