The orbital angular momentum (OAM) sorter is an electron optical device for the measurement of an electron's OAM. It is based on two phase elements, which are referred to as an "unwrapper" and a "corrector" and are located in Fourier conjugate planes. The simplest implementation of the sorter is based on electrostatic phase elements, such as a charged needle for the unwrapper and electrodes with alternating charges or potentials for the corrector. Here, we use a formal analogy between phase shifts introduced by charges and vertical currents to propose alternative designs for the sorter elements, which are based on phase shifts introduced by magnetic fields. We use this concept to provide a general guide for phase element design, which promises to provide improved reliability of phase control in electron optics.

A sorter for electrons based on magnetic elements

Grillo V
2021

Abstract

The orbital angular momentum (OAM) sorter is an electron optical device for the measurement of an electron's OAM. It is based on two phase elements, which are referred to as an "unwrapper" and a "corrector" and are located in Fourier conjugate planes. The simplest implementation of the sorter is based on electrostatic phase elements, such as a charged needle for the unwrapper and electrodes with alternating charges or potentials for the corrector. Here, we use a formal analogy between phase shifts introduced by charges and vertical currents to propose alternative designs for the sorter elements, which are based on phase shifts introduced by magnetic fields. We use this concept to provide a general guide for phase element design, which promises to provide improved reliability of phase control in electron optics.
2021
Istituto Nanoscienze - NANO
Istituto Nanoscienze - NANO - Sede Secondaria Modena
Electron vortex beam
Magnetic phase plate
Electron optics
Electron orbital angular momentum
Sorter
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0304399121000759-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/448318
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact