The sudden absorption of light by a metal nanoparticle launches a series of relaxation processes (internal thermalization, acoustic vibrations, and cooling) which induce a transient modification of its optical response. In this work, the transient optical response associated with the internal thermalization of a single gold nanodisk (occurring on a few picoseconds time scale) was quantitatively investigated by time-resolved spectroscopy experiments, and the measured signals were compared with a model accounting for the effects of both electron and ionic lattice heating. We show that experimental time-resolved signals at delays posterior to nanodisk excitation and electron gas thermalization can be simply interpreted as a combination of electron and lattice temperature evolutions, with probe wavelength-dependent weights. This demonstrates the possibility to selectively probe the electronic or lattice dynamics, through the choice of specific probe wavelengths. Additionally, the time-dependent spectral shape of transient extinction cross-section changes is shown to be successively dominated by the effects of electron and lattice heating, which present distinct spectral signatures.

Electron and Lattice Heating Contributions to the Transient Optical Response of a Single Plasmonic Nano-Object

Rossella F;
2021

Abstract

The sudden absorption of light by a metal nanoparticle launches a series of relaxation processes (internal thermalization, acoustic vibrations, and cooling) which induce a transient modification of its optical response. In this work, the transient optical response associated with the internal thermalization of a single gold nanodisk (occurring on a few picoseconds time scale) was quantitatively investigated by time-resolved spectroscopy experiments, and the measured signals were compared with a model accounting for the effects of both electron and ionic lattice heating. We show that experimental time-resolved signals at delays posterior to nanodisk excitation and electron gas thermalization can be simply interpreted as a combination of electron and lattice temperature evolutions, with probe wavelength-dependent weights. This demonstrates the possibility to selectively probe the electronic or lattice dynamics, through the choice of specific probe wavelengths. Additionally, the time-dependent spectral shape of transient extinction cross-section changes is shown to be successively dominated by the effects of electron and lattice heating, which present distinct spectral signatures.
2021
Istituto Nanoscienze - NANO
Crystal lattices, Electron gas, Electrons, Laser spectroscopy, Optical lattices, Plasmonics, Probes, Transient analysis
File in questo prodotto:
File Dimensione Formato  
rouxel-et-al-2021-electron-and-lattice-heating-contributions-to-the-transient-optical-response-of-a-single-plasmonic.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Rouxel_manuscript_revised.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/448355
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact