If delivered at elevated intensity, ultrasound potentiates enzymatic clot dissolution; however, an elevated acoustic intensity damages vascular wall and favors reocclusion. This study's aim was to investigate whether exposure to high-frequency, low-intensity ultrasound - generated by a diagnostic scanner enhances enzymatic thrombolysis, and if this effect differs in clots from blood of normal subjects and of patients with coronary artery disease (CAD). Venous blood samples were drawn from 10 healthy volunteers and from 10 CAD patients on chronic medical treatment, which also included aspirin. Each sample generated 2 radiolabelled clots, which were positioned in 2 in vitro models filled with human plasma recirculating at 37degrees. One clot was exposed to acetyl salicylic acid (60 mug/ml), tissue plasminogen activator (3 mug/ml) and heparin (I IU/ml), while the other was exposed to the same medications plus ultrasound (2.5 MHz, mechanical index = 1.0) for 3 hours. Enzymatic thrombolysis was measured as solubilization of radiolabel. Normal subjects and patients did not significantly differ as to coagulation parameters, weight, volume and density of the clots, and fibrinolytic activity (p = 0.794). Ultrasound exposure did not influence thrombolysis in clots of normal subjects (p = 0.367), while it enhanced the dissolution of clots of CAD patients (p = 0.013). The enhancement was equal to 51% at 5 minutes, 32% at 15 minutes, 27% at 30 minutes, 20% at 1 hour and 19% at 3 hours (p < 0.05). Diagnostic ultrasound enhances enzymatic dissolution of clots generated from the blood of CAD patients, likely due to chronic treatment and in particular to aspirin.

Therapeutic effect of diagnostic ultrasound on enzymatic thrombolysis. An in vitro study on blood of normal subjects and patients with coronary disease

Basta G;Chiarelli P;Rovai D
2004

Abstract

If delivered at elevated intensity, ultrasound potentiates enzymatic clot dissolution; however, an elevated acoustic intensity damages vascular wall and favors reocclusion. This study's aim was to investigate whether exposure to high-frequency, low-intensity ultrasound - generated by a diagnostic scanner enhances enzymatic thrombolysis, and if this effect differs in clots from blood of normal subjects and of patients with coronary artery disease (CAD). Venous blood samples were drawn from 10 healthy volunteers and from 10 CAD patients on chronic medical treatment, which also included aspirin. Each sample generated 2 radiolabelled clots, which were positioned in 2 in vitro models filled with human plasma recirculating at 37degrees. One clot was exposed to acetyl salicylic acid (60 mug/ml), tissue plasminogen activator (3 mug/ml) and heparin (I IU/ml), while the other was exposed to the same medications plus ultrasound (2.5 MHz, mechanical index = 1.0) for 3 hours. Enzymatic thrombolysis was measured as solubilization of radiolabel. Normal subjects and patients did not significantly differ as to coagulation parameters, weight, volume and density of the clots, and fibrinolytic activity (p = 0.794). Ultrasound exposure did not influence thrombolysis in clots of normal subjects (p = 0.367), while it enhanced the dissolution of clots of CAD patients (p = 0.013). The enhancement was equal to 51% at 5 minutes, 32% at 15 minutes, 27% at 30 minutes, 20% at 1 hour and 19% at 3 hours (p < 0.05). Diagnostic ultrasound enhances enzymatic dissolution of clots generated from the blood of CAD patients, likely due to chronic treatment and in particular to aspirin.
2004
Istituto di Fisiologia Clinica - IFC
thrombosis; ultrasound; thrombolysis; microbubbles
File in questo prodotto:
File Dimensione Formato  
prod_23477-doc_11106.pdf

accesso aperto

Descrizione: Articolo pubblicato
Dimensione 172.84 kB
Formato Adobe PDF
172.84 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/44869
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 19
social impact