In this paper, we consider spatially coupled LDPC codes derived from protographs. In particular, we analyze the performance of the window decoder (WD), which allows reducing the complexity, the memory requirements, and the latency of the flood belief-propagation decoder. We show that the performance degradation of WD is due to the fact that it exploits a single decoding wave instead of two. This has effect both in the ideal case of infinite code length, where it may imply a threshold loss, and in the case of finite length, where it affects the slope of the BER curve in the waterfall region. We show how a forward-backward decoder can reduce such problems at the price of a limited increase of average complexity.

Two is better than one: Reducing the loss of the window decoder for SC-LDPC codes

Tarable A;Ferrari M;Barletta L
2021

Abstract

In this paper, we consider spatially coupled LDPC codes derived from protographs. In particular, we analyze the performance of the window decoder (WD), which allows reducing the complexity, the memory requirements, and the latency of the flood belief-propagation decoder. We show that the performance degradation of WD is due to the fact that it exploits a single decoding wave instead of two. This has effect both in the ideal case of infinite code length, where it may imply a threshold loss, and in the case of finite length, where it affects the slope of the BER curve in the waterfall region. We show how a forward-backward decoder can reduce such problems at the price of a limited increase of average complexity.
2021
SC-LDPC codes
Window decoder
Belief-propagation decoder
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/448903
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact