Human ALG2 encodes an alpha 1,3mannosyltransferase that catalyzes the first steps in the synthesis of N-glycans in the endoplasmic reticulum. Variants in ALG2cause a congenital disorder of glycosylation (CDG) known as ALG2-CDG. Up to date, nine ALG2-CDG patients have been reported worldwide. ALG2-CDG is a rare autosomal recessive inherited disorder characterized by neurological involvement, convulsive syndrome of unknown origin, axial hypotonia, and mental and motor regression. In this study, we used MALDI-TOF MS to define both total serum protein and transferrin (Tf) N-glycan phenotypes in three ALG2-CDG patients carrying a c.752G > T, p.Arg251Leu ALG2 missense variant in homozygous state, as determined by exome sequencing. Comparing it to control samples, we have observed Tf under-occupancy of glycosylation site(s) typical of a defective N-glycan assembly and the occurrence of oligomannose and hybrid type N-glycans. Moreover, we have observed a slight oligomannose accumulation in total serum glyco-profiles. The increased heterogeneity of serum N-glycome in the studied patients suggests a marginal disarrangement of the glycan processing in ALG2-CDG. Previous studies reported on slightly increased concentrations of abnormal serum N-glycans in CDG-I due to defects in the mannosylation steps of dolichol-linked oligosaccharide biosynthesis. This preliminary work aims at considering serum N-glycan accumulation of high mannosylated glycoforms, such as oligomannose and hybrid type N-glycans, as potential diagnostic signals for ALG2-CDG patients.

Mass spectrometry glycophenotype characterization of ALG2-CDG in Argentinean patients with a new genetic variant in homozygosis

Sturiale, L;
2021

Abstract

Human ALG2 encodes an alpha 1,3mannosyltransferase that catalyzes the first steps in the synthesis of N-glycans in the endoplasmic reticulum. Variants in ALG2cause a congenital disorder of glycosylation (CDG) known as ALG2-CDG. Up to date, nine ALG2-CDG patients have been reported worldwide. ALG2-CDG is a rare autosomal recessive inherited disorder characterized by neurological involvement, convulsive syndrome of unknown origin, axial hypotonia, and mental and motor regression. In this study, we used MALDI-TOF MS to define both total serum protein and transferrin (Tf) N-glycan phenotypes in three ALG2-CDG patients carrying a c.752G > T, p.Arg251Leu ALG2 missense variant in homozygous state, as determined by exome sequencing. Comparing it to control samples, we have observed Tf under-occupancy of glycosylation site(s) typical of a defective N-glycan assembly and the occurrence of oligomannose and hybrid type N-glycans. Moreover, we have observed a slight oligomannose accumulation in total serum glyco-profiles. The increased heterogeneity of serum N-glycome in the studied patients suggests a marginal disarrangement of the glycan processing in ALG2-CDG. Previous studies reported on slightly increased concentrations of abnormal serum N-glycans in CDG-I due to defects in the mannosylation steps of dolichol-linked oligosaccharide biosynthesis. This preliminary work aims at considering serum N-glycan accumulation of high mannosylated glycoforms, such as oligomannose and hybrid type N-glycans, as potential diagnostic signals for ALG2-CDG patients.
2021
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
Congenital myasthenic syndromes
Mass spectrometry
ALG2-CDG
Glycophenotype
Alpha-1
3-mannosyltransferase
Congenital disorders of glycosylation
File in questo prodotto:
File Dimensione Formato  
ALG2_CDG GJ.pdf

accesso aperto

Licenza: Creative commons
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/448970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact