The work environment influences workers' well-being and contributes to the growth of personal experiences. In fact, working in an unhealthy workplace can cause stress, frustration, and anxiety. Therefore, companies have to deal with the workers' well-being in the work environment, making the management of human factors a crucial aspect. In this context, the introduction of Industry 4.0 technologies can support workplace monitoring and improvement. Some researchers propose structured methods that consider several ergonomic domains together; however, it is necessary to create platforms that support data collection, elaboration, and correlation in an integrated way. Accordingly, this paper presents a tool that supports the monitoring of operators' activities, the data analysis, and the implementation of corrective actions to make the workplace socially sustainable. Preliminary tests were conducted to assess the functionality of the tool architecture and two use cases are presented. They focus on posture analysis and stress detection by inertial sensors and unsupervised machine learning algorithms, respectively.

Human work sustainability tool

Leone Alessandro;Rescio Gabriele
2022

Abstract

The work environment influences workers' well-being and contributes to the growth of personal experiences. In fact, working in an unhealthy workplace can cause stress, frustration, and anxiety. Therefore, companies have to deal with the workers' well-being in the work environment, making the management of human factors a crucial aspect. In this context, the introduction of Industry 4.0 technologies can support workplace monitoring and improvement. Some researchers propose structured methods that consider several ergonomic domains together; however, it is necessary to create platforms that support data collection, elaboration, and correlation in an integrated way. Accordingly, this paper presents a tool that supports the monitoring of operators' activities, the data analysis, and the implementation of corrective actions to make the workplace socially sustainable. Preliminary tests were conducted to assess the functionality of the tool architecture and two use cases are presented. They focus on posture analysis and stress detection by inertial sensors and unsupervised machine learning algorithms, respectively.
2022
Istituto per la Microelettronica e Microsistemi - IMM
Worker well-being
Human factors
Human-centered manufacturing
Industry 4.0
Stress detection
Unsupervised learning
File in questo prodotto:
File Dimensione Formato  
PostPrint_SMEJMS-D-21-00874.pdf

Open Access dal 23/11/2023

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF Visualizza/Apri
1-s2.0-S0278612521002417-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.91 MB
Formato Adobe PDF
3.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/449015
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 18
social impact