Hypothesis: The broad detection properties of alizarin, not only concerning pH variations but also temperature, glucose and health-like relevant cations alterations, make it a molecule of great scientific interest, particularly for developing multifunctional wearable sensors. Experiment: Herein, the alizarin red S dyestuff is bonded with trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane, as a sol-gel precursor, to functionalize cotton fabrics. The chemical and structural properties of both plain and silane-functionalized dyestuffs are investigated in solution and solid-state by several chemical-physical characterization techniques. Findings: The hybrid dyestuff characterization reveals the epoxy ring-opening of the silica precursor, leading to covalent linkages to the sulfonic group of alizarin, which retains its structure during the sol-gel reaction. The silane-functionalized halochromic dyestuff shows similar halochromic behaviour as its pristine solution in the investigated pH range, thus demonstrating a color shift from yellow to red due to the protonation/deprotonation reversible mechanism of the chromophore. The reversibility and repeatability of pH-sensing properties of treated cotton fabrics are confirmed by diffuse reflectance and CIELAB color space characterizations. Cotton fabric functionalized with alizarin-containing sol-gel coating shows excellent durability of halochromic properties, thus emerging as a versatile platform for stimuli-responsive materials.

Alizarin-functionalized organic-inorganic silane coatings for the development of wearable textile sensors

Trovato V.;Mezzi A.;Brucale M.;Plutino Maria Rosaria
2022

Abstract

Hypothesis: The broad detection properties of alizarin, not only concerning pH variations but also temperature, glucose and health-like relevant cations alterations, make it a molecule of great scientific interest, particularly for developing multifunctional wearable sensors. Experiment: Herein, the alizarin red S dyestuff is bonded with trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane, as a sol-gel precursor, to functionalize cotton fabrics. The chemical and structural properties of both plain and silane-functionalized dyestuffs are investigated in solution and solid-state by several chemical-physical characterization techniques. Findings: The hybrid dyestuff characterization reveals the epoxy ring-opening of the silica precursor, leading to covalent linkages to the sulfonic group of alizarin, which retains its structure during the sol-gel reaction. The silane-functionalized halochromic dyestuff shows similar halochromic behaviour as its pristine solution in the investigated pH range, thus demonstrating a color shift from yellow to red due to the protonation/deprotonation reversible mechanism of the chromophore. The reversibility and repeatability of pH-sensing properties of treated cotton fabrics are confirmed by diffuse reflectance and CIELAB color space characterizations. Cotton fabric functionalized with alizarin-containing sol-gel coating shows excellent durability of halochromic properties, thus emerging as a versatile platform for stimuli-responsive materials.
2022
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
coatings
alizarin
sol-gel
fabrics
functionalization
File in questo prodotto:
File Dimensione Formato  
prod_466432-doc_183374.pdf

solo utenti autorizzati

Descrizione: Alizarin-functionalized organic-inorganic silane coatings for the development of wearable textile sensors
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4 MB
Formato Adobe PDF
4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/449299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact