Hypothesis: The broad detection properties of alizarin, not only concerning pH variations but also temperature, glucose and health-like relevant cations alterations, make it a molecule of great scientific interest, particularly for developing multifunctional wearable sensors. Experiment: Herein, the alizarin red S dyestuff is bonded with trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane, as a sol-gel precursor, to functionalize cotton fabrics. The chemical and structural properties of both plain and silane-functionalized dyestuffs are investigated in solution and solid-state by several chemical-physical characterization techniques. Findings: The hybrid dyestuff characterization reveals the epoxy ring-opening of the silica precursor, leading to covalent linkages to the sulfonic group of alizarin, which retains its structure during the sol-gel reaction. The silane-functionalized halochromic dyestuff shows similar halochromic behaviour as its pristine solution in the investigated pH range, thus demonstrating a color shift from yellow to red due to the protonation/deprotonation reversible mechanism of the chromophore. The reversibility and repeatability of pH-sensing properties of treated cotton fabrics are confirmed by diffuse reflectance and CIELAB color space characterizations. Cotton fabric functionalized with alizarin-containing sol-gel coating shows excellent durability of halochromic properties, thus emerging as a versatile platform for stimuli-responsive materials.
Alizarin-functionalized organic-inorganic silane coatings for the development of wearable textile sensors
Trovato V.;Mezzi A.;Brucale M.;Plutino Maria Rosaria
2022
Abstract
Hypothesis: The broad detection properties of alizarin, not only concerning pH variations but also temperature, glucose and health-like relevant cations alterations, make it a molecule of great scientific interest, particularly for developing multifunctional wearable sensors. Experiment: Herein, the alizarin red S dyestuff is bonded with trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane, as a sol-gel precursor, to functionalize cotton fabrics. The chemical and structural properties of both plain and silane-functionalized dyestuffs are investigated in solution and solid-state by several chemical-physical characterization techniques. Findings: The hybrid dyestuff characterization reveals the epoxy ring-opening of the silica precursor, leading to covalent linkages to the sulfonic group of alizarin, which retains its structure during the sol-gel reaction. The silane-functionalized halochromic dyestuff shows similar halochromic behaviour as its pristine solution in the investigated pH range, thus demonstrating a color shift from yellow to red due to the protonation/deprotonation reversible mechanism of the chromophore. The reversibility and repeatability of pH-sensing properties of treated cotton fabrics are confirmed by diffuse reflectance and CIELAB color space characterizations. Cotton fabric functionalized with alizarin-containing sol-gel coating shows excellent durability of halochromic properties, thus emerging as a versatile platform for stimuli-responsive materials.File | Dimensione | Formato | |
---|---|---|---|
prod_466432-doc_183374.pdf
solo utenti autorizzati
Descrizione: Alizarin-functionalized organic-inorganic silane coatings for the development of wearable textile sensors
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
4 MB
Formato
Adobe PDF
|
4 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.