Recently, nanotechnologies have shifted toward the development of hybrid nanomaterials and functional nanocomposites, which are distinguished by the presence of functional nanometric components or nanofillers dispersed in a polymeric matrix, resulting in increased properties compared to those of either starting component. The original concept is to create an enhanced nanohybrid or nanocomposite material that is appropriate as a surface coating or for other sustainable applications due to increased qualities such as: 1) antifouling or antibacterial; 2) flame-retardant; 3) drug release; 4) sensing; 5) mechanical resistance; and 6) pollutant absorption and degradation [1]. In particular, the incorporation of sensing functions into fabric textiles is a powerful approach toward the development of so-called "smart textiles", enabling the development of wearable sensors, i.e. novel systems characterized by main textile characteristics such as flexibility, biocompatibility, comfort, and mechanical resistance, capable of reacting and adapting to specific external stimuli from their surroundings [2]. This work will show in details the design, synthesis, and characterization of hybrid nanomaterials and multifunctional, innovative and smart nanocomposites based on functional nanoparticles and nanofillers dispersed in polymeric matrices and/or in combination with suitable dopants, used as-is or as coatings of various substrates, for uses in opto-electronic devices, sensors, catalytic processes, cultural heritage, environmental remediation, construction, blue growth, biomedicine and textiles. The setting up of totally green and eco-friendly synthesis procedures based on natural components or wastes to produce functional products that can also be recycled, will be underlined as a crucial step toward sustainability.

Smart and innovative multifunctional materials: from design and synthesis to sustainable applications

Maria Rosaria Plutino
2023

Abstract

Recently, nanotechnologies have shifted toward the development of hybrid nanomaterials and functional nanocomposites, which are distinguished by the presence of functional nanometric components or nanofillers dispersed in a polymeric matrix, resulting in increased properties compared to those of either starting component. The original concept is to create an enhanced nanohybrid or nanocomposite material that is appropriate as a surface coating or for other sustainable applications due to increased qualities such as: 1) antifouling or antibacterial; 2) flame-retardant; 3) drug release; 4) sensing; 5) mechanical resistance; and 6) pollutant absorption and degradation [1]. In particular, the incorporation of sensing functions into fabric textiles is a powerful approach toward the development of so-called "smart textiles", enabling the development of wearable sensors, i.e. novel systems characterized by main textile characteristics such as flexibility, biocompatibility, comfort, and mechanical resistance, capable of reacting and adapting to specific external stimuli from their surroundings [2]. This work will show in details the design, synthesis, and characterization of hybrid nanomaterials and multifunctional, innovative and smart nanocomposites based on functional nanoparticles and nanofillers dispersed in polymeric matrices and/or in combination with suitable dopants, used as-is or as coatings of various substrates, for uses in opto-electronic devices, sensors, catalytic processes, cultural heritage, environmental remediation, construction, blue growth, biomedicine and textiles. The setting up of totally green and eco-friendly synthesis procedures based on natural components or wastes to produce functional products that can also be recycled, will be underlined as a crucial step toward sustainability.
2023
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
sustainability
advanced multifunctional materials
smart textiles
sol-gel chemistry
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/449714
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact