We consider a single-phase depth-averaged model for the numerical simulation of fast-moving landslides with the goal of constructing a well-balanced, yet scalable and efficient, second-order time-stepping algorithm. We apply a Strang splitting approach to distinguish between parabolic and hyperbolic problems. For the parabolic contribution, we adopt a second-order Implicit- Explicit Runge-Kutta-Chebyshev scheme, while we use a two-stage Taylor discretization combined with a path-conservative strategy, to deal with the purely hyperbolic contribution. The proposed strategy allows to decouple hyperbolic from parabolic-reaction stiff contributions resulting in an overall well-balanced scheme subject just to stability restrictions of the hyperbolic term. The spatial discretization we adopt is based on a standard finite element method, associated with a hierarchically refined Cartesian grid. After providing numerical evidence of the well-balancing property, we demonstrate the capability of the proposed approach to select time steps larger than the ones adopted by a classical Taylor-Galerkin scheme. Finally, we provide some meaningful scaling results on ideal and realistic scenarios.

A scalable well-balanced numerical scheme for the simulation of fast landslides with efficient time stepping

Federico Gatti;
2024

Abstract

We consider a single-phase depth-averaged model for the numerical simulation of fast-moving landslides with the goal of constructing a well-balanced, yet scalable and efficient, second-order time-stepping algorithm. We apply a Strang splitting approach to distinguish between parabolic and hyperbolic problems. For the parabolic contribution, we adopt a second-order Implicit- Explicit Runge-Kutta-Chebyshev scheme, while we use a two-stage Taylor discretization combined with a path-conservative strategy, to deal with the purely hyperbolic contribution. The proposed strategy allows to decouple hyperbolic from parabolic-reaction stiff contributions resulting in an overall well-balanced scheme subject just to stability restrictions of the hyperbolic term. The spatial discretization we adopt is based on a standard finite element method, associated with a hierarchically refined Cartesian grid. After providing numerical evidence of the well-balancing property, we demonstrate the capability of the proposed approach to select time steps larger than the ones adopted by a classical Taylor-Galerkin scheme. Finally, we provide some meaningful scaling results on ideal and realistic scenarios.
2024
Taylor-Galerkin scheme
Depth-integrated models
Implicit-explicit Runge-Kutta-Chebyshev scheme
C-property
Path-conservative methods
Parallel simulations
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/449792
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact