In multiple sclerosis (MS), oxidative stress (OS) is implicated in the neurodegenerative processes that occur from the beginning of the disease. Unchecked OS initiates a vicious circle caused by its crosstalk with inflammation, leading to demyelination, axonal damage and neuronal loss. The failure of MS antioxidant therapies relying on the use of endogenous and natural compounds drives the application of novel approaches to assess target relevance to the disease prior to preclinical testing of new drug candidates. To identify drugs that can act as regulators of intracel-lular oxidative homeostasis, we applied an in silico approach that links genome-wide MS associa-tions and molecular quantitative trait loci (QTLs) to proteins of the OS pathway. We found 10 drugs with both central nervous system and oral bioavailability, targeting five out of the 21 top-scoring hits, including arginine methyltransferase (CARM1), which was first linked to MS. In particular, the direction of brain expression QTLs for CARM1 and protein kinase MAPK1 enabled us to select BIIB021 and PEITC drugs with the required target modulation. Our study highlights OS-related molecules regulated by functional MS variants that could be targeted by existing drugs as a supple-ment to the approved disease-modifying treatments.

Combining human genetics of multiple sclerosis with oxidative stress phenotype for drug repositioning

Olla Stefania;
2021

Abstract

In multiple sclerosis (MS), oxidative stress (OS) is implicated in the neurodegenerative processes that occur from the beginning of the disease. Unchecked OS initiates a vicious circle caused by its crosstalk with inflammation, leading to demyelination, axonal damage and neuronal loss. The failure of MS antioxidant therapies relying on the use of endogenous and natural compounds drives the application of novel approaches to assess target relevance to the disease prior to preclinical testing of new drug candidates. To identify drugs that can act as regulators of intracel-lular oxidative homeostasis, we applied an in silico approach that links genome-wide MS associa-tions and molecular quantitative trait loci (QTLs) to proteins of the OS pathway. We found 10 drugs with both central nervous system and oral bioavailability, targeting five out of the 21 top-scoring hits, including arginine methyltransferase (CARM1), which was first linked to MS. In particular, the direction of brain expression QTLs for CARM1 and protein kinase MAPK1 enabled us to select BIIB021 and PEITC drugs with the required target modulation. Our study highlights OS-related molecules regulated by functional MS variants that could be targeted by existing drugs as a supple-ment to the approved disease-modifying treatments.
2021
ADME-Tox
GWAS
Multiple sclerosis
Oxidative stress
Repurposing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/450100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact