Recent progress in developing new vaccination strategies against cancer requires the production of complex and reliable animal models reflecting the complexity of the tumors with their microenvironment. Mice can be considered a good source due to low cost and ease of being genetically modified, inoculated with tumor cell lines or treated by chemicals to induce different cancers. Despite significant limitations in modeling human cancer complexity, preclinical trials conducted in mice can efficiently contribute to understand molecular mechanisms of cancer, to closely resemble and follow carcinogenesis steps impossible to study into humans, and to test new anticancer therapies. In this chapter, we generally describe the different mouse models developed for cancer vaccines' preclinical trials. A particular focus is dedicated to a chemically-induced colorectal cancer model in use in our laboratories.
Azoxymethane/Dextran Sodium Sulfate (AOM/DSS) Model of Colorectal Cancer
Signori Emanuela
2024
Abstract
Recent progress in developing new vaccination strategies against cancer requires the production of complex and reliable animal models reflecting the complexity of the tumors with their microenvironment. Mice can be considered a good source due to low cost and ease of being genetically modified, inoculated with tumor cell lines or treated by chemicals to induce different cancers. Despite significant limitations in modeling human cancer complexity, preclinical trials conducted in mice can efficiently contribute to understand molecular mechanisms of cancer, to closely resemble and follow carcinogenesis steps impossible to study into humans, and to test new anticancer therapies. In this chapter, we generally describe the different mouse models developed for cancer vaccines' preclinical trials. A particular focus is dedicated to a chemically-induced colorectal cancer model in use in our laboratories.File | Dimensione | Formato | |
---|---|---|---|
2017 Switching on microglia with electro-conductive multi walled carbon nanotubes.pdf
solo utenti autorizzati
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.38 MB
Formato
Adobe PDF
|
2.38 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.