We present a fast implementation of a recently proposed speech compression scheme, based on an all-pole model of the vocal tract. Each frame of the speech signal is analyzed by storing the parameters of the complex damped exponentials deduced from the all-pole model and its initial conditions. In mathematical terms, the analysis stage corresponds to solving a structured total least squares (STLS) problem. It is shown that by exploiting the displacement rank structure of the involved matrices the STLS problem can be solved in a very fast way. Synthesis is computationally very cheap since it consists of adding the complex damped exponentials based on the transmitted parameters. The compression scheme is applied on a speech signal. The speed improvement of the fast vocoder analysis scheme is demonstrated. Furthermore, the quality of the compression scheme is compared with that of a standard coding algorithm, by using the segmental Signal-to-Noise Ratio.

Efficient implementation of a Structured Total Least Squares based speech compression method

Mastronardi N;
2003

Abstract

We present a fast implementation of a recently proposed speech compression scheme, based on an all-pole model of the vocal tract. Each frame of the speech signal is analyzed by storing the parameters of the complex damped exponentials deduced from the all-pole model and its initial conditions. In mathematical terms, the analysis stage corresponds to solving a structured total least squares (STLS) problem. It is shown that by exploiting the displacement rank structure of the involved matrices the STLS problem can be solved in a very fast way. Synthesis is computationally very cheap since it consists of adding the complex damped exponentials based on the transmitted parameters. The compression scheme is applied on a speech signal. The speed improvement of the fast vocoder analysis scheme is demonstrated. Furthermore, the quality of the compression scheme is compared with that of a standard coding algorithm, by using the segmental Signal-to-Noise Ratio.
2003
Istituto Applicazioni del Calcolo ''Mauro Picone''
algoritmi
veloci,
total
least
squares
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/450226
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact