We study the numerical approximation of solutions for parabolic integro-differential equations (PIDE). Similar models arise in option pricing, to generalize the Black-Scholes equation, when the processes which generate the underlying stock returns may contain both a continuous part and jumps. Due to the non-local nature of the integral term, unconditionally stable implicit difference schemes are not practically feasible. Here we propose using implicit-explicit (IMEX) Runge-Kutta methods for the time integration to solve the integral term explicitly, giving higher-order accuracy schemes under weak stability time-step restrictions. Numerical tests are presented to show the computational efficiency of the approximation.

Implicit-explicit numerical schemes for jump-diffusion processes

Briani M;Natalini R;
2007

Abstract

We study the numerical approximation of solutions for parabolic integro-differential equations (PIDE). Similar models arise in option pricing, to generalize the Black-Scholes equation, when the processes which generate the underlying stock returns may contain both a continuous part and jumps. Due to the non-local nature of the integral term, unconditionally stable implicit difference schemes are not practically feasible. Here we propose using implicit-explicit (IMEX) Runge-Kutta methods for the time integration to solve the integral term explicitly, giving higher-order accuracy schemes under weak stability time-step restrictions. Numerical tests are presented to show the computational efficiency of the approximation.
2007
Istituto Applicazioni del Calcolo ''Mauro Picone''
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/450430
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 66
social impact