Due to their superior mechanical properties, 2D materials have gained interest as active layers in flexible devices co-integrating electronic, photonic, and straintronic functions altogether. To this end, 2D bendable membranes compatible with the technological process standards and endowed with large-scale uniformity are highly desired. Here, it is reported on the realization of bendable membranes based on silicene layers (the 2D form of silicon) by means of a process in which the layers are fully detached from the native substrate and transferred onto arbitrary flexible substrates. The application of macroscopic mechanical deformations induces a strain-responsive behavior in the Raman spectrum of silicene. It is also shown that the membranes under elastic tension relaxation are prone to form microscale wrinkles displaying a local generation of strain in the silicene layer consistent with that observed under macroscopic mechanical deformation. Optothermal Raman spectroscopy measurements reveal a curvature-dependent heat dispersion in silicene wrinkles. Finally, as compelling evidence of the technological potential of the silicene membranes, it is demonstrated that they can be readily introduced into a lithographic process flow resulting in the definition of flexible device-ready architectures, a piezoresistor, and thus paving the way to a viable advance in a fully silicon-compatible technology framework.

Bendable Silicene Membranes

Christian Martella;Chiara Massetti;Daya Sagar Dhungana;Carlo Grazianetti;Alessandro Molle
2023

Abstract

Due to their superior mechanical properties, 2D materials have gained interest as active layers in flexible devices co-integrating electronic, photonic, and straintronic functions altogether. To this end, 2D bendable membranes compatible with the technological process standards and endowed with large-scale uniformity are highly desired. Here, it is reported on the realization of bendable membranes based on silicene layers (the 2D form of silicon) by means of a process in which the layers are fully detached from the native substrate and transferred onto arbitrary flexible substrates. The application of macroscopic mechanical deformations induces a strain-responsive behavior in the Raman spectrum of silicene. It is also shown that the membranes under elastic tension relaxation are prone to form microscale wrinkles displaying a local generation of strain in the silicene layer consistent with that observed under macroscopic mechanical deformation. Optothermal Raman spectroscopy measurements reveal a curvature-dependent heat dispersion in silicene wrinkles. Finally, as compelling evidence of the technological potential of the silicene membranes, it is demonstrated that they can be readily introduced into a lithographic process flow resulting in the definition of flexible device-ready architectures, a piezoresistor, and thus paving the way to a viable advance in a fully silicon-compatible technology framework.
2023
Istituto per la Microelettronica e Microsistemi - IMM
silicene
membranes
two-dimesnional
strain
electronics
File in questo prodotto:
File Dimensione Formato  
prod_491339-doc_204900.pdf

accesso aperto

Descrizione: Bendable Silicene Membranes
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/450444
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact