Due to their superior mechanical properties, 2D materials have gained interest as active layers in flexible devices co-integrating electronic, photonic, and straintronic functions altogether. To this end, 2D bendable membranes compatible with the technological process standards and endowed with large-scale uniformity are highly desired. Here, it is reported on the realization of bendable membranes based on silicene layers (the 2D form of silicon) by means of a process in which the layers are fully detached from the native substrate and transferred onto arbitrary flexible substrates. The application of macroscopic mechanical deformations induces a strain-responsive behavior in the Raman spectrum of silicene. It is also shown that the membranes under elastic tension relaxation are prone to form microscale wrinkles displaying a local generation of strain in the silicene layer consistent with that observed under macroscopic mechanical deformation. Optothermal Raman spectroscopy measurements reveal a curvature-dependent heat dispersion in silicene wrinkles. Finally, as compelling evidence of the technological potential of the silicene membranes, it is demonstrated that they can be readily introduced into a lithographic process flow resulting in the definition of flexible device-ready architectures, a piezoresistor, and thus paving the way to a viable advance in a fully silicon-compatible technology framework.
Bendable Silicene Membranes
Christian Martella;Chiara Massetti;Daya Sagar Dhungana;Carlo Grazianetti;Alessandro Molle
2023
Abstract
Due to their superior mechanical properties, 2D materials have gained interest as active layers in flexible devices co-integrating electronic, photonic, and straintronic functions altogether. To this end, 2D bendable membranes compatible with the technological process standards and endowed with large-scale uniformity are highly desired. Here, it is reported on the realization of bendable membranes based on silicene layers (the 2D form of silicon) by means of a process in which the layers are fully detached from the native substrate and transferred onto arbitrary flexible substrates. The application of macroscopic mechanical deformations induces a strain-responsive behavior in the Raman spectrum of silicene. It is also shown that the membranes under elastic tension relaxation are prone to form microscale wrinkles displaying a local generation of strain in the silicene layer consistent with that observed under macroscopic mechanical deformation. Optothermal Raman spectroscopy measurements reveal a curvature-dependent heat dispersion in silicene wrinkles. Finally, as compelling evidence of the technological potential of the silicene membranes, it is demonstrated that they can be readily introduced into a lithographic process flow resulting in the definition of flexible device-ready architectures, a piezoresistor, and thus paving the way to a viable advance in a fully silicon-compatible technology framework.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_491339-doc_204900.pdf
accesso aperto
Descrizione: Bendable Silicene Membranes
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.89 MB
Formato
Adobe PDF
|
1.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


