Evidence for the deep recycling of surficial materials through the Earth's mantle and their antiquity has long been sought to understand the role of subducting plates and plumes in mantle convection. Radiogenic isotope evidence for such recycling remains equivocal because the age and location of parent-daughter fractionation are not known. Conversely, while stable isotopes can provide irrefutable evidence for low-temperature fractionation, their range in most unaltered oceanic basalts is limited and the age of any variation is unconstrained. Here we show that d18O ratios in basalts from the Azores are often lower than in pristine mantle. This, combined with increased Nb/B ratios and a large range in d11B ratios, provides compelling evidence for the recycling of materials that had undergone fractionation near the Earth's surface. Moreover, d11B is negatively correlated with 187Os/188Os ratios, which extend to subchondritic values1, constraining the age of the high Nb/B, 11B-enriched endmember to be more than 2.5 billion years (Gyr) old. We infer this component to be meltand fluid-depleted lithospheric mantle from a subducted oceanic plate, whereas other Azores basalts contain a contribution from 3-Gyr-old melt-enriched basalt2. We conclude that both components are most probably derived from an Archaean oceanic plate that was subducted, arguably into the deep mantle, where it was stored until thermal buoyancy caused it to rise beneath the Azores islands 3 Gyr later.
Boron and oxygen isotope evidence for recycling of subducted components over the past 2.5 Gyr.
Tonarini S;
2007
Abstract
Evidence for the deep recycling of surficial materials through the Earth's mantle and their antiquity has long been sought to understand the role of subducting plates and plumes in mantle convection. Radiogenic isotope evidence for such recycling remains equivocal because the age and location of parent-daughter fractionation are not known. Conversely, while stable isotopes can provide irrefutable evidence for low-temperature fractionation, their range in most unaltered oceanic basalts is limited and the age of any variation is unconstrained. Here we show that d18O ratios in basalts from the Azores are often lower than in pristine mantle. This, combined with increased Nb/B ratios and a large range in d11B ratios, provides compelling evidence for the recycling of materials that had undergone fractionation near the Earth's surface. Moreover, d11B is negatively correlated with 187Os/188Os ratios, which extend to subchondritic values1, constraining the age of the high Nb/B, 11B-enriched endmember to be more than 2.5 billion years (Gyr) old. We infer this component to be meltand fluid-depleted lithospheric mantle from a subducted oceanic plate, whereas other Azores basalts contain a contribution from 3-Gyr-old melt-enriched basalt2. We conclude that both components are most probably derived from an Archaean oceanic plate that was subducted, arguably into the deep mantle, where it was stored until thermal buoyancy caused it to rise beneath the Azores islands 3 Gyr later.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.