Ecological and ecosystem modellers frequently need to interpolate spatiotemporal observations of geophysical and environmental parameters over an analysed area. However, particularly in marine science, modellers with low expertise in oceanography and hydrodynamics can hardly use interpolation methods optimally. This paper introduces an Open Science oriented, open-source, scalable and efficient workflow for 2D marine environmental parameters. It combines a fast, efficient interpolation method with a Bayesian hierarchical model embedding the stationary advection-diffusion equation as a constraint. Our workflow fills the usability gap between interpolation software providers and the users' communities. It can run entirely automatically without requiring expert parametrization. It is also available on a cloud computing platform, with a Web Processing Service compliant interface, supporting collaboration, repeatability, reproducibility, and provenance tracking. We demonstrate that our workflow produces comparable results to a state-of-the-art model (frequently used in oceanography) in interpolating four environmental parameters at the global scale.

An Open Science oriented Bayesian interpolation model for marine parameter observations

Coro G
2023

Abstract

Ecological and ecosystem modellers frequently need to interpolate spatiotemporal observations of geophysical and environmental parameters over an analysed area. However, particularly in marine science, modellers with low expertise in oceanography and hydrodynamics can hardly use interpolation methods optimally. This paper introduces an Open Science oriented, open-source, scalable and efficient workflow for 2D marine environmental parameters. It combines a fast, efficient interpolation method with a Bayesian hierarchical model embedding the stationary advection-diffusion equation as a constraint. Our workflow fills the usability gap between interpolation software providers and the users' communities. It can run entirely automatically without requiring expert parametrization. It is also available on a cloud computing platform, with a Web Processing Service compliant interface, supporting collaboration, repeatability, reproducibility, and provenance tracking. We demonstrate that our workflow produces comparable results to a state-of-the-art model (frequently used in oceanography) in interpolating four environmental parameters at the global scale.
2023
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Geospatial interpolation
Marine science
Advection-diffusion
Markov chain Monte Carlo
Bayesian models
Artificial intelligence
File in questo prodotto:
File Dimensione Formato  
prod_489106-doc_203596.pdf

solo utenti autorizzati

Descrizione: Preprint version
Tipologia: Versione Editoriale (PDF)
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 9.13 MB
Formato Adobe PDF
9.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_489106-doc_203876.pdf

accesso aperto

Descrizione: An Open Science oriented Bayesian interpolation model for marine parameter observations
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.61 MB
Formato Adobe PDF
4.61 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/450914
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact