We prove the nonlinear asymptotic stability of stably stratified solutions to the Incompressible Porous Media equation (IPM) for initial perturbations in $\dot H^{1-\tau}(\R^2) \cap \dot H^s(\R^2)$ with $s > 3$ and for any $0 < \tau <1$. Such result improves the existing literature, where the asymptotic stability is proved for initial perturbations belonging at least to $H^{20}(\R^2)$. \\ More precisely, the aim of the article is threefold. First, we provide a simplified and improved proof of global-in-time well-posedness of the Boussinesq equations with strongly damped vorticity in $H^{1-\tau}(\R^2) \cap \dot H^s(\R^2)$ with $s > 3$ and $0 < \tau <1$. Next, we prove the strong convergence of the Boussinesq system with damped vorticity towards (IPM) under a suitable scaling. Lastly, the asymptotic stability of stratified solutions to (IPM) follows as a byproduct.\\ A symmetrization of the approximating system and a careful study of the anisotropic properties of the equations via anisotropic Littlewood-Paley decomposition play key roles to obtain uniform energy estimates. Finally, one of the main new and crucial points is the integrable time decay of the vertical velocity $\|u_2(t)\|_{L^\infty (\R^2)}$ for initial data only in $\dot H^{1-\tau}(\R^2) \cap \dot H^s(\R^2)$ with $s >3$.
Relaxation approximation and asymptotic stability of stratified solutions to the IPM equation
Roberta Bianchini
;
2024
Abstract
We prove the nonlinear asymptotic stability of stably stratified solutions to the Incompressible Porous Media equation (IPM) for initial perturbations in $\dot H^{1-\tau}(\R^2) \cap \dot H^s(\R^2)$ with $s > 3$ and for any $0 < \tau <1$. Such result improves the existing literature, where the asymptotic stability is proved for initial perturbations belonging at least to $H^{20}(\R^2)$. \\ More precisely, the aim of the article is threefold. First, we provide a simplified and improved proof of global-in-time well-posedness of the Boussinesq equations with strongly damped vorticity in $H^{1-\tau}(\R^2) \cap \dot H^s(\R^2)$ with $s > 3$ and $0 < \tau <1$. Next, we prove the strong convergence of the Boussinesq system with damped vorticity towards (IPM) under a suitable scaling. Lastly, the asymptotic stability of stratified solutions to (IPM) follows as a byproduct.\\ A symmetrization of the approximating system and a careful study of the anisotropic properties of the equations via anisotropic Littlewood-Paley decomposition play key roles to obtain uniform energy estimates. Finally, one of the main new and crucial points is the integrable time decay of the vertical velocity $\|u_2(t)\|_{L^\infty (\R^2)}$ for initial data only in $\dot H^{1-\tau}(\R^2) \cap \dot H^s(\R^2)$ with $s >3$.| File | Dimensione | Formato | |
|---|---|---|---|
|
BCBP_ARMA2023.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
537.13 kB
Formato
Adobe PDF
|
537.13 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


