Volcanic eruptions can trigger tsunamis, which may cause significant damage to coastal communities and infrastructure. Tsunami generation during volcanic eruptions is complex and often due to a combination of processes. The 1650 eruption of the Kolumbo submarine volcano triggered a tsunami causing major destruction on surrounding islands in the Aegean Sea. However, the source mechanisms behind the tsunami have been disputed due to difficulties in sampling and imaging submarine volcanoes. Here we show, based on three-dimensional seismic data, that similar to 1.2 km(3) of Kolumbo's northwestern flank moved 500-1000 m downslope along a basal detachment surface. This movement is consistent with depressurization of the magma feeding system, causing a catastrophic explosion. Numerical tsunami simulations indicate that only the combination of flank movement followed by an explosive eruption can explain historical eyewitness accounts. This cascading sequence of natural hazards suggests that assessing submarine flank movements is critical for early warning of volcanogenic tsunamis.

Cascading events during the 1650 tsunamigenic eruption of Kolumbo volcano

Dalla Valle G;
2023

Abstract

Volcanic eruptions can trigger tsunamis, which may cause significant damage to coastal communities and infrastructure. Tsunami generation during volcanic eruptions is complex and often due to a combination of processes. The 1650 eruption of the Kolumbo submarine volcano triggered a tsunami causing major destruction on surrounding islands in the Aegean Sea. However, the source mechanisms behind the tsunami have been disputed due to difficulties in sampling and imaging submarine volcanoes. Here we show, based on three-dimensional seismic data, that similar to 1.2 km(3) of Kolumbo's northwestern flank moved 500-1000 m downslope along a basal detachment surface. This movement is consistent with depressurization of the magma feeding system, causing a catastrophic explosion. Numerical tsunami simulations indicate that only the combination of flank movement followed by an explosive eruption can explain historical eyewitness accounts. This cascading sequence of natural hazards suggests that assessing submarine flank movements is critical for early warning of volcanogenic tsunamis.
2023
Istituto di Scienze Marine - ISMAR
SUBMARINE VOLCANO
AEGEAN SEA
File in questo prodotto:
File Dimensione Formato  
prod_489324-doc_203741.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 10.35 MB
Formato Adobe PDF
10.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/451206
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 3
social impact