A theoretical error estimate for quadrature formulas, which depends on four approximations of the integral, is derived. We obtain a bound, often sharper than the trivial one, which requires milder conditions to be satisfied than a similar result previously presented by Laurie. A selection of numerical tests with one-dimensional integrals is reported, to show how the error estimate works in practice.

Local error estimates in quadrature

Favati P;
1991

Abstract

A theoretical error estimate for quadrature formulas, which depends on four approximations of the integral, is derived. We obtain a bound, often sharper than the trivial one, which requires milder conditions to be satisfied than a similar result previously presented by Laurie. A selection of numerical tests with one-dimensional integrals is reported, to show how the error estimate works in practice.
1991
Istituto di informatica e telematica - IIT
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Quadrature
Local error
File in questo prodotto:
File Dimensione Formato  
prod_489436-doc_203820.pdf

solo utenti autorizzati

Descrizione: Local error estimates in quadrature
Tipologia: Versione Editoriale (PDF)
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/451318
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact