Integration of geomorphology, stratigraphy, sedimentology and morphotectonics in the analysis of the lower Cecina River reach, coastal Tuscany, reveals an undocumented historical channel avulsion. Geomorphological evidence and radiocarbon dating support that, from the Last Glacial Maximum until the end of the 16th century, the Cecina River flowed north of the present course and formed a well-developed cuspate delta. Two concurrent factors, active tectonics as a preparing factor and discharge regime as an activation factor, are thus inferred to have favored the avulsion of Cecina River. Fragmentary archaeological and historical records indicate that the late Holocene Cecina River plain was virtually unpopulated until the latest 16th century. This seems the main reason why high-magnitude hydrological events and prominent river channel avulsions were not reported in historical chronicles. From this perspective, geomorphological data may provide important knowledge and understanding of recent dynamics of environmental change when historical record is lacking or missing.
Tectonic and climatic controls on unrecorded historical landscape modifications: the avulsion of the lower Cecina River (Tuscany, central Italy).
Bonini M;Moratti G;
2008
Abstract
Integration of geomorphology, stratigraphy, sedimentology and morphotectonics in the analysis of the lower Cecina River reach, coastal Tuscany, reveals an undocumented historical channel avulsion. Geomorphological evidence and radiocarbon dating support that, from the Last Glacial Maximum until the end of the 16th century, the Cecina River flowed north of the present course and formed a well-developed cuspate delta. Two concurrent factors, active tectonics as a preparing factor and discharge regime as an activation factor, are thus inferred to have favored the avulsion of Cecina River. Fragmentary archaeological and historical records indicate that the late Holocene Cecina River plain was virtually unpopulated until the latest 16th century. This seems the main reason why high-magnitude hydrological events and prominent river channel avulsions were not reported in historical chronicles. From this perspective, geomorphological data may provide important knowledge and understanding of recent dynamics of environmental change when historical record is lacking or missing.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.