A novel chitinase gene of 888 bp from Streptomyces bacillaris was cloned and expressed in Escherichia coli BL21. The purified recombinant enzyme (SbChiAJ103) was identified as the first microbial-derived family 19 endochitinase that showed exochitinase activity. SbChiAJ103 exhibited the substrate preference for N-acetylchitooligosaccharides with even degrees of polymerization and the capability to specifically hydrolyze colloidal chitin into (GlcNAc)2. Mono-methyl adipate was employed as a novel linker for the efficient covalent immobilization of chitinase on magnetic nanoparticles (MNPs). The immobilized SbChiAJ103, SbChiAJ103@MNPs, exhibited superior pH tolerance, temperature stability, and storage stability than free SbChiAJ103. Even after incubation at 45 °C for 24 h, SbChiAJ103@MNPs could retain more than 60.0% initial activity. As a result, the enzymatic hydrolysis yield of SbChiAJ103@MNPs increased to 1.58 times that of free SbChiAJ103. Moreover, SbChiAJ103@MNPs could be reused by convenient magnetic separation. After 10 recycles, SbChiAJ103@MNPs could retain almost 80.0% of its initial activity. The immobilization of the novel chitinase SbChiAJ103 paves the way to the efficient and eco-friendly commercial production of (GlcNAc)2. KEY POINTS: o The first microbial GH19 endochitinase with exochitinase activity was reported. o Mono-methyl adipate was first employed to immobilize chitinase. o SbChiAJ103@MNPs showed excellent pH stability, thermal stability, and reusability.

A novel microbial-derived family 19 endochitinase with exochitinase activity and its immobilization

Francesco Secundo;
2023

Abstract

A novel chitinase gene of 888 bp from Streptomyces bacillaris was cloned and expressed in Escherichia coli BL21. The purified recombinant enzyme (SbChiAJ103) was identified as the first microbial-derived family 19 endochitinase that showed exochitinase activity. SbChiAJ103 exhibited the substrate preference for N-acetylchitooligosaccharides with even degrees of polymerization and the capability to specifically hydrolyze colloidal chitin into (GlcNAc)2. Mono-methyl adipate was employed as a novel linker for the efficient covalent immobilization of chitinase on magnetic nanoparticles (MNPs). The immobilized SbChiAJ103, SbChiAJ103@MNPs, exhibited superior pH tolerance, temperature stability, and storage stability than free SbChiAJ103. Even after incubation at 45 °C for 24 h, SbChiAJ103@MNPs could retain more than 60.0% initial activity. As a result, the enzymatic hydrolysis yield of SbChiAJ103@MNPs increased to 1.58 times that of free SbChiAJ103. Moreover, SbChiAJ103@MNPs could be reused by convenient magnetic separation. After 10 recycles, SbChiAJ103@MNPs could retain almost 80.0% of its initial activity. The immobilization of the novel chitinase SbChiAJ103 paves the way to the efficient and eco-friendly commercial production of (GlcNAc)2. KEY POINTS: o The first microbial GH19 endochitinase with exochitinase activity was reported. o Mono-methyl adipate was first employed to immobilize chitinase. o SbChiAJ103@MNPs showed excellent pH stability, thermal stability, and reusability.
2023
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
Chitin; Chitinase; Immobilization; Magnetic nanoparticles; N-acetylchitooligosaccharides.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/451777
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact