The current understanding of the dynamics of gas-surface interactions is that all of the energy lost in the collision is transferred to vibrations of the target. Electronic excitations were shown to play a marginal role except for cases in which the impinging particles have energies of several electronvolts. Here we show that this picture does not hold for metal surfaces supporting acoustic surface plasmons. Such loss, dressed with a vibronic structure, is shown to make up a prominent energy transfer route down to the terahertz region for Ne atoms scattering off Cu(111) and is expected to dominate for most metals. This mechanism determines, e.g., the drag force acting on telecommunication satellites, which are typically gold-plated to reduce overheating by sunshine. The electronic excitations can be unambiguously discerned from the vibrational ones under mild hyperthermal impact conditions.

Prominence of Terahertz Acoustic Surface Plasmon Excitation in Gas-Surface Interaction with Metals

G Bracco;L Vattuone;M Smerieri;G Carraro;L Savio;
2021

Abstract

The current understanding of the dynamics of gas-surface interactions is that all of the energy lost in the collision is transferred to vibrations of the target. Electronic excitations were shown to play a marginal role except for cases in which the impinging particles have energies of several electronvolts. Here we show that this picture does not hold for metal surfaces supporting acoustic surface plasmons. Such loss, dressed with a vibronic structure, is shown to make up a prominent energy transfer route down to the terahertz region for Ne atoms scattering off Cu(111) and is expected to dominate for most metals. This mechanism determines, e.g., the drag force acting on telecommunication satellites, which are typically gold-plated to reduce overheating by sunshine. The electronic excitations can be unambiguously discerned from the vibrational ones under mild hyperthermal impact conditions.
2021
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
acoustic surface plasmon
Ne atom scattering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/451940
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact