Total Digestible Nutrient Value of forage and concentrate and nutritional characteristics and develop a prediction equation using the chemical composition variables as predictors. Nutrient chemical characteristics data were obtained from 278 forage and 87 feedstuffs. The data included dry and organic matter, crude protein, ether extract, ash, fiber composition, and non-fiber Carbohydrate. Stepwise regression was used to eliminate variables that did not influence variation in the model and used 0.05 as the critical probability level. Data were then randomly divided into two parts; two-thirds of the data was used to estimate the Total Digestible Nutrient, whereas the remaining part was used to validate the estimated Total Digestible Nutrient and was analyzed by multiple linear regressions. Total Digestible Nutrient in forage was negatively correlated with Ether Extract, Acid Detergent Lignin, and Non-fibre Carbohydrate (P<0.01) but positively correlated with Crude Protein (P<0.01), ash, Neutral Detergent Fibre, and Acid Detergent Fiber. Total Digestible Nutrient in feedstuffs was negatively correlated with NFC (P<0.01) but positively correlated with Neutral Detergent Fibre (P<0.01), Acid Detergent Lignin (P<0.01), Ether Extract (P<0.01), Crude Protein (P<0.01), ash, and Acid Detergent Fiber (P<0.01). The results show that the Total Digestible Nutrient content can be accurately estimated starting from the chemical composition.
Prediction Total Digestible Nutrient value of forage and feedstuffs from their chemical characteristics
Sarubbi F
;Auriemma G;Pappalardo R;Grazioli G
2023
Abstract
Total Digestible Nutrient Value of forage and concentrate and nutritional characteristics and develop a prediction equation using the chemical composition variables as predictors. Nutrient chemical characteristics data were obtained from 278 forage and 87 feedstuffs. The data included dry and organic matter, crude protein, ether extract, ash, fiber composition, and non-fiber Carbohydrate. Stepwise regression was used to eliminate variables that did not influence variation in the model and used 0.05 as the critical probability level. Data were then randomly divided into two parts; two-thirds of the data was used to estimate the Total Digestible Nutrient, whereas the remaining part was used to validate the estimated Total Digestible Nutrient and was analyzed by multiple linear regressions. Total Digestible Nutrient in forage was negatively correlated with Ether Extract, Acid Detergent Lignin, and Non-fibre Carbohydrate (P<0.01) but positively correlated with Crude Protein (P<0.01), ash, Neutral Detergent Fibre, and Acid Detergent Fiber. Total Digestible Nutrient in feedstuffs was negatively correlated with NFC (P<0.01) but positively correlated with Neutral Detergent Fibre (P<0.01), Acid Detergent Lignin (P<0.01), Ether Extract (P<0.01), Crude Protein (P<0.01), ash, and Acid Detergent Fiber (P<0.01). The results show that the Total Digestible Nutrient content can be accurately estimated starting from the chemical composition.File | Dimensione | Formato | |
---|---|---|---|
bionatura.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
211.05 kB
Formato
Adobe PDF
|
211.05 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.