Polycyclic aromatic hydrocarbons have widely been conjectured to be ubiquitous in space, as supported by the recent discovery of two isomers of cyanonaphthalene, indene, and 2-cyanoindene in the Taurus molecular cloud-1 using radioastronomy. Here, the photoionization dynamics of 1-cyanonaphthalene (1-CNN) are investigated using synchrotron radiation over the h = 9.0-19.5 eV range, revealing that prompt autoionization from the plasmon resonance dominates the photophysics for h? = 11.5-16.0 eV. Minimal photo-induced dissociation, whether originating from an excited state impulsive bond rupture or through internal conversion followed by a statistical bond cleavage process, occurs over the microsecond timescale (as limited by the experimental setup). The direct photoionization cross section and photoelectron angular distributions are simulated using an ezDyson model combining Dyson orbitals with Coulomb wave photoejection. When considering these data in conjunction with recent radiative cooling measurements on 1-CNN, which showed that cations formed with up to 5 eV of internal energy efficiently stabilize through recurrent fluorescence, we conclude that the organic backbone of 1-CNN is resilient to photodestruction by VUV and soft XUV radiation. These dynamics may prove to be a common feature for the survival of small polycyclic aromatic hydrocarbons in space, provided that the cations have a suitable electronic structure to support recurrent fluorescence.
Autoionization from the plasmon resonance in isolated 1-cyanonaphthalene
Bolognesi Paola;Chiarinelli Jacopo;Avaldi Lorenzo;
2023
Abstract
Polycyclic aromatic hydrocarbons have widely been conjectured to be ubiquitous in space, as supported by the recent discovery of two isomers of cyanonaphthalene, indene, and 2-cyanoindene in the Taurus molecular cloud-1 using radioastronomy. Here, the photoionization dynamics of 1-cyanonaphthalene (1-CNN) are investigated using synchrotron radiation over the h = 9.0-19.5 eV range, revealing that prompt autoionization from the plasmon resonance dominates the photophysics for h? = 11.5-16.0 eV. Minimal photo-induced dissociation, whether originating from an excited state impulsive bond rupture or through internal conversion followed by a statistical bond cleavage process, occurs over the microsecond timescale (as limited by the experimental setup). The direct photoionization cross section and photoelectron angular distributions are simulated using an ezDyson model combining Dyson orbitals with Coulomb wave photoejection. When considering these data in conjunction with recent radiative cooling measurements on 1-CNN, which showed that cations formed with up to 5 eV of internal energy efficiently stabilize through recurrent fluorescence, we conclude that the organic backbone of 1-CNN is resilient to photodestruction by VUV and soft XUV radiation. These dynamics may prove to be a common feature for the survival of small polycyclic aromatic hydrocarbons in space, provided that the cations have a suitable electronic structure to support recurrent fluorescence.| File | Dimensione | Formato | |
|---|---|---|---|
|
2023 Autoionization from the plasmon resonance in isolated 1- cyanonaphthalene.pdf
solo utenti autorizzati
Descrizione: Articolo pubblicato
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
6.78 MB
Formato
Adobe PDF
|
6.78 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
JCP23_CM_01119.pdf.pdf
accesso aperto
Descrizione: Articolo accettato per la pubblicazione
Tipologia:
Documento in Post-print
Licenza:
Altro tipo di licenza
Dimensione
595.31 kB
Formato
Adobe PDF
|
595.31 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


