Tantalum boride is an ultra-refractory and ultra-hard ceramic known so far for its favorable high-temperature thermo-mechanical properties and also characterized by a low spectral emittance, making it interesting for novel high-temperature solar absorbers for Concentrating Solar Power. In this work, we investigated two types of TaB sintered products with different porosities, and on each of them, we realized four femtosecond laser treatments differing in the accumulated laser fluence. The treated surfaces were then characterized by SEM-EDS, roughness analysis, and optical spectrometry. We show that, depending on laser processing parameters, the multi-scale surface textures produced by femtosecond laser machining can greatly increase the solar absorptance, while the spectral emittance increase is significantly lower. These combined effects result in increased photothermal efficiency of the absorber, with interesting perspectives for the application of these ceramics in Concentrating Solar Power and Concentrating Solar Thermal. To the best of our knowledge, this is the first demonstration of successful photothermal efficiency enhancement of ultra-hard ceramics using laser machining.

Multi-Scale Femtosecond-Laser Texturing for Photothermal Efficiency Enhancement on Solar Absorbers Based on TaB2 Ceramics

Sani Elisa;Sciti Diletta;Failla Simone;Melandri Cesare;Bellucci Alessandro;Orlando Stefano;Trucchi Daniele M
2023

Abstract

Tantalum boride is an ultra-refractory and ultra-hard ceramic known so far for its favorable high-temperature thermo-mechanical properties and also characterized by a low spectral emittance, making it interesting for novel high-temperature solar absorbers for Concentrating Solar Power. In this work, we investigated two types of TaB sintered products with different porosities, and on each of them, we realized four femtosecond laser treatments differing in the accumulated laser fluence. The treated surfaces were then characterized by SEM-EDS, roughness analysis, and optical spectrometry. We show that, depending on laser processing parameters, the multi-scale surface textures produced by femtosecond laser machining can greatly increase the solar absorptance, while the spectral emittance increase is significantly lower. These combined effects result in increased photothermal efficiency of the absorber, with interesting perspectives for the application of these ceramics in Concentrating Solar Power and Concentrating Solar Thermal. To the best of our knowledge, this is the first demonstration of successful photothermal efficiency enhancement of ultra-hard ceramics using laser machining.
2023
Istituto di Struttura della Materia - ISM - Sede Secondaria Montelibretti
Istituto di Struttura della Materia - ISM - Sede Secondaria Tito Scalo
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
Istituto Nazionale di Ottica - INO
Concentrating Solar Power
laser processing
multi-scale surface texturing
solar absorbers
File in questo prodotto:
File Dimensione Formato  
Multi-Scale Femtosecond-Laser Texturing for Photothermal Efficiency Enhancement on Solar Absorbers Based onTaB2 Ceramics - nanomaterials-13-01692-v2.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.46 MB
Formato Adobe PDF
5.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/452142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact