The sluggish kinetics associated with the oxygen evolution reaction (OER) limits the sustainability of fuel production and chemical synthesis. Developing catalysts based on Earth abundant elements with a reasonable strategy could solve the challenge. Here, we present a heterostructure built from CrOx and CuS whose interface gives rise to the advent of new functionalities in catalytic activity. Using X-ray photoelectron and absorption spectroscopies, we identified the multiple oxidation states and low coordination number of Cr metal in CrOx-CuS heterostructure. Benefitting from these features, CrOx-CuS generates oxygen gas through water splitting with a low over potential of 190 mV vs RHE at a current density of 10 mA cm. The catalyst shows no evident deactivation after a 36-hours operation in alkaline medium. The high catalytic activity, inspired by first principles calculations, and long-time durability make it one of the most effective OER electrocatalysts.

Interfacing CrOx and CuS for synergistically enhanced water oxidation catalysis

Gradone, Alessandro;Jugovac, Matteo;Sheverdyaeva, Polina M;Morandi, Vittorio;Moras, Paolo;Vomiero, Alberto
2023

Abstract

The sluggish kinetics associated with the oxygen evolution reaction (OER) limits the sustainability of fuel production and chemical synthesis. Developing catalysts based on Earth abundant elements with a reasonable strategy could solve the challenge. Here, we present a heterostructure built from CrOx and CuS whose interface gives rise to the advent of new functionalities in catalytic activity. Using X-ray photoelectron and absorption spectroscopies, we identified the multiple oxidation states and low coordination number of Cr metal in CrOx-CuS heterostructure. Benefitting from these features, CrOx-CuS generates oxygen gas through water splitting with a low over potential of 190 mV vs RHE at a current density of 10 mA cm. The catalyst shows no evident deactivation after a 36-hours operation in alkaline medium. The high catalytic activity, inspired by first principles calculations, and long-time durability make it one of the most effective OER electrocatalysts.
2023
Istituto per la Microelettronica e Microsistemi - IMM
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Istituto di Struttura della Materia - ISM - Sede Secondaria Trieste
Chemical vapor deposition
DFT
Heterostructure
Hydrothermal
Oxygen evolution
File in questo prodotto:
File Dimensione Formato  
prod_490293-doc_204273.pdf

solo utenti autorizzati

Descrizione: Interfacing CrOx and CuS for synergistically enhanced water oxidation catalysis
Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 4.82 MB
Formato Adobe PDF
4.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/452163
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact