Vertical stacks of graphene and ferromagnetic layers are predicted to be efficient spin filters, while the experimentally observed figures of merit systematically remain below the theoretical predictions. According to general consensus, a vaguely defined interface contamination is found responsible for this discrepancy. Here, it is demonstrated how the spin-polarized electronic structure of single-layer graphene supported on a ferromagnetic cobalt substrate is affected by the presence of an interfacial carbidic buffer layer, formed by residual carbon present in the Co substrate. It is found that the Co-C hybridized single-spin state near the Fermi level disappears upon thermal segregation of bulk carbon at the graphene-Co interface, which determines the electronic decoupling of graphene from the ferromagnetic support and consequently, the suppression of net spin polarization. These observations are shown to be independent of the graphene azimuthal orientation with respect to the high symmetry directions of the substrate. The findings provide clear evidence that the realization of highly polarized spin currents in graphene/ferromagnet heterostacks depends on careful control of the graphene growth process in order to eliminate interfacial carbon.
Effect of Residual Carbon on Spin-Polarized Coupling at a Graphene/Ferromagnet Interface
Jugovac Matteo;Bigi Chiara;Vobornik Ivana;Fujii Jun;Moras Paolo;
2023
Abstract
Vertical stacks of graphene and ferromagnetic layers are predicted to be efficient spin filters, while the experimentally observed figures of merit systematically remain below the theoretical predictions. According to general consensus, a vaguely defined interface contamination is found responsible for this discrepancy. Here, it is demonstrated how the spin-polarized electronic structure of single-layer graphene supported on a ferromagnetic cobalt substrate is affected by the presence of an interfacial carbidic buffer layer, formed by residual carbon present in the Co substrate. It is found that the Co-C hybridized single-spin state near the Fermi level disappears upon thermal segregation of bulk carbon at the graphene-Co interface, which determines the electronic decoupling of graphene from the ferromagnetic support and consequently, the suppression of net spin polarization. These observations are shown to be independent of the graphene azimuthal orientation with respect to the high symmetry directions of the substrate. The findings provide clear evidence that the realization of highly polarized spin currents in graphene/ferromagnet heterostacks depends on careful control of the graphene growth process in order to eliminate interfacial carbon.File | Dimensione | Formato | |
---|---|---|---|
prod_490296-doc_204275.pdf
accesso aperto
Descrizione: Effect of Residual Carbon on Spin-Polarized Coupling at a Graphene/Ferromagnet Interface
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.08 MB
Formato
Adobe PDF
|
3.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.