Bio-polyols (BPOs), characterized by a hydroxyl number up to around 90 mg KOH/g, narrow polydispersity index and relatively low molecular mass up to 2000 g/mol, were synthetized from partially and completely epoxidized soybean and linseed oils and caprylic acid or 3-phenyl butyric acid. These BPOs were used in the presence of toluene diisocyanate to produce polyurethane (PU) foams by using a quasi-prepolymer method involving a two-step reaction. A detailed structural investigation of the prepolymers from toluene diisocyanate and both BPOs and polypropylene glycol was conducted by SEC and solution NMR. The apparent density of the foams was in the range of 40-90 kg/m3, with higher values for foams from the aromatic acid. All the foams showed an open-cell structure with uniform and regular shape and uniform size. The specific Young's moduli and compression deflection values suggest superior mechanical properties than the reference foams. The novel synthesized polyurethanes are excellent candidates to partially replace petroleum-based materials.

Flexible Polyurethane Foams from Bio-Based Polyols: Prepolymer Synthesis and Characterization

Simona Losio;Adriano Vignali;Simona Tomaselli;Fabio Bertini
2023

Abstract

Bio-polyols (BPOs), characterized by a hydroxyl number up to around 90 mg KOH/g, narrow polydispersity index and relatively low molecular mass up to 2000 g/mol, were synthetized from partially and completely epoxidized soybean and linseed oils and caprylic acid or 3-phenyl butyric acid. These BPOs were used in the presence of toluene diisocyanate to produce polyurethane (PU) foams by using a quasi-prepolymer method involving a two-step reaction. A detailed structural investigation of the prepolymers from toluene diisocyanate and both BPOs and polypropylene glycol was conducted by SEC and solution NMR. The apparent density of the foams was in the range of 40-90 kg/m3, with higher values for foams from the aromatic acid. All the foams showed an open-cell structure with uniform and regular shape and uniform size. The specific Young's moduli and compression deflection values suggest superior mechanical properties than the reference foams. The novel synthesized polyurethanes are excellent candidates to partially replace petroleum-based materials.
2023
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
bio-polyols
toluene diisocyanate (TDI)
flexible polyurethane foams
prepolymer synthesis and characterization
NMR
thermal and mechanical properties
File in questo prodotto:
File Dimensione Formato  
prod_490340-doc_204399.pdf

solo utenti autorizzati

Descrizione: Flexible Polyurethane Foams from Bio-Based Polyols: Prepolymer Synthesis and Characterization
Tipologia: Versione Editoriale (PDF)
Dimensione 6.39 MB
Formato Adobe PDF
6.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/452210
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact