The adsorption of N-heterocyclic olefins (NHOs) on silicon is investigated in a combined scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory study. We find that both of the studied NHOs bind covalently, with ylidic character, to the silicon adatoms of the substrate and exhibit good thermal stability. The adsorption geometry strongly depends on the N-substituents: for large N-substituents, an upright adsorption geometry is favored, while a flat-lying geometry is found for the NHO with smaller wingtips. These different geometries strongly influence the quality and properties of the obtained monolayers. The upright geometry leads to the formation of ordered monolayers, whereas the flat-lying NHOs yield a mostly disordered, but denser, monolayer. The obtained monolayers both show large work function reductions, as the higher density of the flat-lying monolayer is found to compensate for the smaller vertical dipole moments. Our findings offer new prospects in the design of tailor-made ligand structures in organic electronics and optoelectronics, catalysis, and material science.

N-heterocyclic olefins on a silicon surface

Hogan Conor;
2023

Abstract

The adsorption of N-heterocyclic olefins (NHOs) on silicon is investigated in a combined scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory study. We find that both of the studied NHOs bind covalently, with ylidic character, to the silicon adatoms of the substrate and exhibit good thermal stability. The adsorption geometry strongly depends on the N-substituents: for large N-substituents, an upright adsorption geometry is favored, while a flat-lying geometry is found for the NHO with smaller wingtips. These different geometries strongly influence the quality and properties of the obtained monolayers. The upright geometry leads to the formation of ordered monolayers, whereas the flat-lying NHOs yield a mostly disordered, but denser, monolayer. The obtained monolayers both show large work function reductions, as the higher density of the flat-lying monolayer is found to compensate for the smaller vertical dipole moments. Our findings offer new prospects in the design of tailor-made ligand structures in organic electronics and optoelectronics, catalysis, and material science.
2023
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Density functional calculations
Monolayers
N-heterocyclic olefins
Scanning tunneling microscopy
Silicon
File in questo prodotto:
File Dimensione Formato  
prod_490370-doc_204325.pdf

accesso aperto

Descrizione: N-Heterocyclic Olefins on a Silicon Surface - Supporting Information
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 29.78 MB
Formato Adobe PDF
29.78 MB Adobe PDF Visualizza/Apri
prod_490370-doc_204324 (2).pdf

accesso aperto

Descrizione: Articolo pubblicato - main article
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/452240
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact