Allocation of requirements to different teams is a typical preliminary task in large-scale system development projects. This critical activity is often performed manually and can benefit from automated requirements classification techniques. To date, limited evidence is available about the effectiveness of existing machine learning (ML) approaches for requirements classification in industrial cases. This paper aims to fill this gap by evaluating state-of-the-art language models and ML algorithms for classification in the railway industry. Since the interpretation of the results of ML systems is particularly relevant in the studied context, we also provide an information augmentation approach to complement the output of the ML-based classification. Our results show that the BERT uncased language model with the softmax classifier can allocate the requirements to different teams with a 76% F1 score when considering requirements allocation to the most frequent teams. Information augmentation provides potentially useful indications in 76% of the cases. The results confirm that currently available techniques can be applied to real-world cases, thus enabling the first step for technology transfer of automated requirements classification. The study can be useful to practitioners operating in requirements-centered contexts such as railways, where accurate requirements classification becomes crucial for better allocation of requirements to various teams.

Requirements classification for smart allocation: a case study in the railway industry

Ferrari A;
2023

Abstract

Allocation of requirements to different teams is a typical preliminary task in large-scale system development projects. This critical activity is often performed manually and can benefit from automated requirements classification techniques. To date, limited evidence is available about the effectiveness of existing machine learning (ML) approaches for requirements classification in industrial cases. This paper aims to fill this gap by evaluating state-of-the-art language models and ML algorithms for classification in the railway industry. Since the interpretation of the results of ML systems is particularly relevant in the studied context, we also provide an information augmentation approach to complement the output of the ML-based classification. Our results show that the BERT uncased language model with the softmax classifier can allocate the requirements to different teams with a 76% F1 score when considering requirements allocation to the most frequent teams. Information augmentation provides potentially useful indications in 76% of the cases. The results confirm that currently available techniques can be applied to real-world cases, thus enabling the first step for technology transfer of automated requirements classification. The study can be useful to practitioners operating in requirements-centered contexts such as railways, where accurate requirements classification becomes crucial for better allocation of requirements to various teams.
2023
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
9798350326895
Language models
Natural Language Processing
Requirements allocation
Requirements classification
File in questo prodotto:
File Dimensione Formato  
prod_490374-doc_204311.pdf

embargo fino al 27/09/2025

Descrizione: Preprint - Requirements classification for smart allocation: a case study in the railway industry
Tipologia: Versione Editoriale (PDF)
Dimensione 316.33 kB
Formato Adobe PDF
316.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_490374-doc_204312.pdf

embargo fino al 27/09/2025

Descrizione: Postprint - Requirements classification for smart allocation: a case study in the railway industry
Tipologia: Versione Editoriale (PDF)
Dimensione 316.33 kB
Formato Adobe PDF
316.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_490374-doc_204391.pdf

embargo fino al 27/09/2025

Descrizione: Requirements classification for smart allocation: a case study in the railway industry
Tipologia: Versione Editoriale (PDF)
Dimensione 220.89 kB
Formato Adobe PDF
220.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/452244
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact