The administration of poorly water-soluble drugs represents a relevant problem due to the low body fluids transport efficiency through hydrophilic hydrogels. Star-shaped co-polymers, i.e., amphiphilic polymers such as those with a hydrophobic core and a hydrophilic outer shell, can be used to improve weak interactions with drugs, with relevant benefits in terms of administration and controlled delivery. In this work, two different co-polymers, four-arm star-shaped PCL-PEG and six-arm star-shaped PCL-PEG, were synthesized via ring-opening polymerization to be loaded with ciprofloxacin. 1H-NMR and FTIR analyses confirmed that PCL arms were successfully grafted to the mPEG backbone, while DSC analysis indicated similar crystallinity and melting point, ranging from 56 to 60 °C, independent of the different co-polymer architecture. Therefore, both star-shaped PCL-PEGs were investigated as cargo device for ciprofloxacin. No significant differences were observed in terms of drug entrapment efficiency (>95%) and drug release, characterized by a pronounced burst followed by a slow sustained release, only slightly affected by the co-polymer architecture. This result was also confirmed with curve fitting via the Korsmeyer-Peppas model. Lastly, good antibacterial properties and biocompatibility exhibited in both star-shaped PCL-PEG co-polymers suggest a promising use for oral delivery applications.

Synthesis and Characterization of Ciprofloxacin Loaded Star-Shaped Polycaprolactone-Polyethylene Glycol Hydrogels for Oral Delivery

Vincenzo Guarino
2023

Abstract

The administration of poorly water-soluble drugs represents a relevant problem due to the low body fluids transport efficiency through hydrophilic hydrogels. Star-shaped co-polymers, i.e., amphiphilic polymers such as those with a hydrophobic core and a hydrophilic outer shell, can be used to improve weak interactions with drugs, with relevant benefits in terms of administration and controlled delivery. In this work, two different co-polymers, four-arm star-shaped PCL-PEG and six-arm star-shaped PCL-PEG, were synthesized via ring-opening polymerization to be loaded with ciprofloxacin. 1H-NMR and FTIR analyses confirmed that PCL arms were successfully grafted to the mPEG backbone, while DSC analysis indicated similar crystallinity and melting point, ranging from 56 to 60 °C, independent of the different co-polymer architecture. Therefore, both star-shaped PCL-PEGs were investigated as cargo device for ciprofloxacin. No significant differences were observed in terms of drug entrapment efficiency (>95%) and drug release, characterized by a pronounced burst followed by a slow sustained release, only slightly affected by the co-polymer architecture. This result was also confirmed with curve fitting via the Korsmeyer-Peppas model. Lastly, good antibacterial properties and biocompatibility exhibited in both star-shaped PCL-PEG co-polymers suggest a promising use for oral delivery applications.
2023
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
PCL arms
star co-polymers
Hydrogels
Ciprofloxacin
Drug Delivery
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/452262
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact