We report Monte Carlo simulations of electronic noise in heavily doped nanometric GaAs Schottky-barrier diodes (SBDs) recently proposed as promising devices for THz applications. We consider a SBD operating in series with a parallel output resonant circuit when a high-frequency large-signal voltage is applied to the whole system. Significant modifications of the noise spectrum with respect to the diode subjected to a constant applied voltage are found to occur in the THz-region. To interpret such behaviour, we have developed a simple analytical approach based on the static I-V and C-V relations as well as on the series resistance of the SBD.

Theoretical investigation of Schottky-barrier diode noise performance in external resonant circuits

2006

Abstract

We report Monte Carlo simulations of electronic noise in heavily doped nanometric GaAs Schottky-barrier diodes (SBDs) recently proposed as promising devices for THz applications. We consider a SBD operating in series with a parallel output resonant circuit when a high-frequency large-signal voltage is applied to the whole system. Significant modifications of the noise spectrum with respect to the diode subjected to a constant applied voltage are found to occur in the THz-region. To interpret such behaviour, we have developed a simple analytical approach based on the static I-V and C-V relations as well as on the series resistance of the SBD.
2006
INFM
MONTE-CARLO-SIMULATION
FREQUENCY-MULTIPLIER
THZ
GHZ
DOUBLER
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/452466
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact