: In this paper the blending of polyamides nylon 6 and nylon 12, with a perfectly alternating ethylene/CO copolymer containing 50 mol-% carbonyl groups (polyketone) is investigated in comparison to blends of the same polyamides with polyolefins containing varying degrees of carbonyl group incorporation. These include a poly[ethylene- co-(methyl acrylate)] copolymer containing 1.9 mol-% methyl ester groups and poly[ethylene-co-(ethyl undecylenate)] copolymers with between 0.20 and 1.25 mol-% ester incorporation. Blends were obtained of polyamides and the polyolefins in compositions between 20/80 and 80/20 in solution and in a Brabender mixer. SEM studies together with TGA, DSC and FTIR measurements show excellent compatibilization for both polyketone and poly[ethylene-co- (methyl acrylate)] copolymers with the nylons. The poly- [ethylene-co-(ethyl undecylenate)] polymers displayed much less compatibilization although they still performed significantly better compared to pure polyethylene. The difference in compatibilization is discussed with respect to the importance of both the number of interactive groups present in the polyolefin and the steric requirements of hydrogen bond formation.
Reactive Blending of Polyamides with Different Carbobyl Containing Olefin Polymers
Passaglia E;Bianchini C;
2003
Abstract
: In this paper the blending of polyamides nylon 6 and nylon 12, with a perfectly alternating ethylene/CO copolymer containing 50 mol-% carbonyl groups (polyketone) is investigated in comparison to blends of the same polyamides with polyolefins containing varying degrees of carbonyl group incorporation. These include a poly[ethylene- co-(methyl acrylate)] copolymer containing 1.9 mol-% methyl ester groups and poly[ethylene-co-(ethyl undecylenate)] copolymers with between 0.20 and 1.25 mol-% ester incorporation. Blends were obtained of polyamides and the polyolefins in compositions between 20/80 and 80/20 in solution and in a Brabender mixer. SEM studies together with TGA, DSC and FTIR measurements show excellent compatibilization for both polyketone and poly[ethylene-co- (methyl acrylate)] copolymers with the nylons. The poly- [ethylene-co-(ethyl undecylenate)] polymers displayed much less compatibilization although they still performed significantly better compared to pure polyethylene. The difference in compatibilization is discussed with respect to the importance of both the number of interactive groups present in the polyolefin and the steric requirements of hydrogen bond formation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


