Entanglement and correlation are at the basis of quantum mechanics and have been used in optics to create a framework for "ghost imaging". We propose that a similar scheme can be used in an electron microscope to exploit the correlation of electrons with the coincident detection of collective mode excitations in a sample. In this way, an image of the sample can be formed on an electron camera even if electrons never illuminated the region of interest directly. This concept, which can be regarded as the inverse of photon-induced near-field electron microscopy, can be used to probe delicate molecules with a resolution that is beyond the wavelength of the collective mode. © 2023 The Authors. Published by American Chemical Society
One-Dimensional "Ghost Imaging" in Electron Microscopy of Inelastically Scattered Electrons
Rotunno Enzo;Grillo Vincenzo
2023
Abstract
Entanglement and correlation are at the basis of quantum mechanics and have been used in optics to create a framework for "ghost imaging". We propose that a similar scheme can be used in an electron microscope to exploit the correlation of electrons with the coincident detection of collective mode excitations in a sample. In this way, an image of the sample can be formed on an electron camera even if electrons never illuminated the region of interest directly. This concept, which can be regarded as the inverse of photon-induced near-field electron microscopy, can be used to probe delicate molecules with a resolution that is beyond the wavelength of the collective mode. © 2023 The Authors. Published by American Chemical SocietyFile | Dimensione | Formato | |
---|---|---|---|
prod_490477-doc_204370.pdf
accesso aperto
Descrizione: One-Dimensional "Ghost Imaging" in Electron Microscopy of Inelastically Scattered Electrons
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
4.78 MB
Formato
Adobe PDF
|
4.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.