Photoenzymes are a rare class of biocatalysts that use light to facilitate chemical reactions. Many of these catalysts utilize a flavin cofactor to absorb light, suggesting that other flavoproteins might have latent photochemical functions. Lactate monooxygenase is a flavin-dependent oxidoreductase previously reported to mediate the photodecarboxylation of carboxylates to afford alkylated flavin adducts. While this reaction holds a potential synthetic value, the mechanism and synthetic utility of this process are unknown. Here, we combine femtosecond spectroscopy, site-directed mutagenesis, and a hybrid quantum-classical computational approach to reveal the active site photochemistry and the role the active site amino acid residues play in facilitating this decarboxylation. Light-induced electron transfer from histidine to flavin was revealed, which has not been reported in other proteins. These mechanistic insights enable the development of catalytic oxidative photodecarboxylation of mandelic acid to produce benzaldehyde, a previously unknown reaction for photoenzymes. Our findings suggest that a much wider range of enzymes have the potential for photoenzymatic catalysis than has been realized to date. © 2023 American Chemical Society.

Mechanism and Dynamics of Photodecarboxylation Catalyzed by Lactate Monooxygenase

ZanettiPolzi Laura;
2023

Abstract

Photoenzymes are a rare class of biocatalysts that use light to facilitate chemical reactions. Many of these catalysts utilize a flavin cofactor to absorb light, suggesting that other flavoproteins might have latent photochemical functions. Lactate monooxygenase is a flavin-dependent oxidoreductase previously reported to mediate the photodecarboxylation of carboxylates to afford alkylated flavin adducts. While this reaction holds a potential synthetic value, the mechanism and synthetic utility of this process are unknown. Here, we combine femtosecond spectroscopy, site-directed mutagenesis, and a hybrid quantum-classical computational approach to reveal the active site photochemistry and the role the active site amino acid residues play in facilitating this decarboxylation. Light-induced electron transfer from histidine to flavin was revealed, which has not been reported in other proteins. These mechanistic insights enable the development of catalytic oxidative photodecarboxylation of mandelic acid to produce benzaldehyde, a previously unknown reaction for photoenzymes. Our findings suggest that a much wider range of enzymes have the potential for photoenzymatic catalysis than has been realized to date. © 2023 American Chemical Society.
2023
Istituto Nanoscienze - NANO
Istituto Nanoscienze - NANO - Sede Secondaria Modena
Article, back electron transfer, catalysis, chemical reaction, chemical structure, decarboxylation
File in questo prodotto:
File Dimensione Formato  
prod_490536-doc_204405.pdf

solo utenti autorizzati

Descrizione: Mechanism and Dynamics of Photodecarboxylation Catalyzed by Lactate Monooxygenase
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.72 MB
Formato Adobe PDF
3.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1985981.pdf

Open Access dal 09/06/2024

Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/452806
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact