The conversion of semimetallic suspended graphene (Gr) to a large-gap semiconducting phase is here realized by controlled adsorption of atomic hydrogen (deuterium) on free-standing nanoporous Gr veils. This approach allows to achieve a very clean and neat adsorption, overcoming any spurious influence associated to the presence of substrates. The effects of local rehybridization from sp2 to sp3 chemical bonding are investigated by combining X-ray photoelectron spectroscopy and high-resolution electron energy-loss spectroscopy (HREELS) with ab-initio based modelling. We find that the hydrogen adatoms on the C sites induce a stretching frequency, clearly identified in the vibrational spectra thanks to the use of the D isotope. Overall, the results are compatible with the predicted fingerprints of adsorption on both sides of Gr corresponding to the graphane configuration. Moreover, HREELS of the deuterated samples shows a sizeable opening of the optical band gap, i.e. 3.25 eV, consistent with the modified spectral density observed in the valence band photoemission. The results are in agreement with ab-initio calculations by GW and Bethe-Salpeter equation approaches, predicting a large quasiparticle gap opening and huge exciton binding energy. © 2023 The Authors

Dielectric response and excitations of hydrogenated free-standing graphene

Biagi, R.;Gillespie, P.;Hernandez Bertran, Michael A.;Bonacci, Miki;Molinari, Elisa;De Renzi, Valentina;Prezzi, Deborah
2023

Abstract

The conversion of semimetallic suspended graphene (Gr) to a large-gap semiconducting phase is here realized by controlled adsorption of atomic hydrogen (deuterium) on free-standing nanoporous Gr veils. This approach allows to achieve a very clean and neat adsorption, overcoming any spurious influence associated to the presence of substrates. The effects of local rehybridization from sp2 to sp3 chemical bonding are investigated by combining X-ray photoelectron spectroscopy and high-resolution electron energy-loss spectroscopy (HREELS) with ab-initio based modelling. We find that the hydrogen adatoms on the C sites induce a stretching frequency, clearly identified in the vibrational spectra thanks to the use of the D isotope. Overall, the results are compatible with the predicted fingerprints of adsorption on both sides of Gr corresponding to the graphane configuration. Moreover, HREELS of the deuterated samples shows a sizeable opening of the optical band gap, i.e. 3.25 eV, consistent with the modified spectral density observed in the valence band photoemission. The results are in agreement with ab-initio calculations by GW and Bethe-Salpeter equation approaches, predicting a large quasiparticle gap opening and huge exciton binding energy. © 2023 The Authors
2023
Istituto Nanoscienze - NANO
Istituto Nanoscienze - NANO - Sede Secondaria Modena
Density functional theory, Electron energy loss spectroscopy, Graphane, GW-BSE calculations, Hydrogen functionalization, Nanoporous graphene, Photoelectron spectroscopy
File in questo prodotto:
File Dimensione Formato  
prod_490573-doc_204421.pdf

accesso aperto

Descrizione: Dielectric response and excitations of hydrogenated free-standing graphene
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/452843
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact