It is known that Kaniadakis entropy, a generalization of the Shannon-Boltzmann-Gibbs entropic form, is always super-additive for any bipartite statistically independent distributions. In this paper, we show that when imposing a suitable constraint, there exist classes of maximal entropy distributions labeled by a positive real number ?>0 that makes Kaniadakis entropy multi-additive, i.e., S?[pA?B]=(1+?)(S?[pA]+S?[pB]), under the composition of two statistically independent and identically distributed distributions pA?B(x,y)=pA(x)pB(y), with reduced distributions pA(x) and pB(y) belonging to the same class.

Multi-Additivity in Kaniadakis Entropy

Scarfone Antonio Maria;
2024

Abstract

It is known that Kaniadakis entropy, a generalization of the Shannon-Boltzmann-Gibbs entropic form, is always super-additive for any bipartite statistically independent distributions. In this paper, we show that when imposing a suitable constraint, there exist classes of maximal entropy distributions labeled by a positive real number ?>0 that makes Kaniadakis entropy multi-additive, i.e., S?[pA?B]=(1+?)(S?[pA]+S?[pB]), under the composition of two statistically independent and identically distributed distributions pA?B(x,y)=pA(x)pB(y), with reduced distributions pA(x) and pB(y) belonging to the same class.
2024
Istituto dei Sistemi Complessi - ISC
k-entropy
pseudo-additivity
power-law distributions
File in questo prodotto:
File Dimensione Formato  
prod_491657-doc_205076.pdf

accesso aperto

Descrizione: Multiaditivity in Kaniadakis entropy
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 326.19 kB
Formato Adobe PDF
326.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/452954
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact