The light lithophile (Li, Be and B) and halogen (F, Cl) elements are powerful tracers of fluid transfer due to their mobility during high temperature hydrothermal processes and metamorphic devolatilisation. Moreover, although a great deal of studies have been carried out on these elements in whole rock and minerals of altered rocks from divergent andconvergent plate margins, an inventory for mineral phases from the altered Icelandic oceanic crust is still incomplete. In the present paper we report the results of in situ EPMA and SIMS investigations on variously altered magmatic (plagioclase and clinopyroxene) and hydrothermal phases (amphibole and epidote) from selected cuttings drilled at different depths (400 - 3000 m) of the well RN-17, Reykjanes geothermal system (SW Iceland). Our study has benefited from the use of high-magnification SEM investigations; from ICP-MS on Li, P-TIMS determinations of boron isotope composition (δ11B) and ID analyses of B contents on the whole rock. Particularly, SIMS data on epidote have shown that alteration beneath Reykjanes has been more efficient in the shallow and intermediate cuttings, while whole rock data on boron isotope composition have revealed that the alteration has been caused firstly by δ11B-poor fluids and successively by δ11B-rich seawater-hydrothermal fluids.

An investigation of trace and isotope light elements in mineral phases from well RN-17 (Reykjanes peninsula, SW Iceland).

Ottolini L;Tonarini S;Gianelli G;
2010

Abstract

The light lithophile (Li, Be and B) and halogen (F, Cl) elements are powerful tracers of fluid transfer due to their mobility during high temperature hydrothermal processes and metamorphic devolatilisation. Moreover, although a great deal of studies have been carried out on these elements in whole rock and minerals of altered rocks from divergent andconvergent plate margins, an inventory for mineral phases from the altered Icelandic oceanic crust is still incomplete. In the present paper we report the results of in situ EPMA and SIMS investigations on variously altered magmatic (plagioclase and clinopyroxene) and hydrothermal phases (amphibole and epidote) from selected cuttings drilled at different depths (400 - 3000 m) of the well RN-17, Reykjanes geothermal system (SW Iceland). Our study has benefited from the use of high-magnification SEM investigations; from ICP-MS on Li, P-TIMS determinations of boron isotope composition (δ11B) and ID analyses of B contents on the whole rock. Particularly, SIMS data on epidote have shown that alteration beneath Reykjanes has been more efficient in the shallow and intermediate cuttings, while whole rock data on boron isotope composition have revealed that the alteration has been caused firstly by δ11B-poor fluids and successively by δ11B-rich seawater-hydrothermal fluids.
2010
Istituto di Geoscienze e Georisorse - IGG - Sede Pisa
hydrothermal process
SIMS
microbean analysis
boron isotopes
Reykjanes peninsula
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/45306
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact