AIMS: One of the main challenges of culture-independent soil microbiology is distinguishing the microbial community's viable fraction from dead matter. Propidium monoazide (PMA) binds the DNA of dead cells, preventing its amplification. This dye could represent a robust means to overcome the drawbacks of other selective methods, such as ribonucleic acid-based analyses. METHODS AND RESULTS: We quantified functional genes from viable archaea and bacteria in soil by combining the use of PMA and quantitative polymerase chain reaction. Four N-cycle-related functional genes (bacterial and archaeal ammonia monooxygenase, nitrate reductase, and nitrite reductase) were successfully quantified from the living fraction of bacteria and archaea of a paddy soil. The protocol was also tested with pure bacterial cultures and soils with different physical and chemical properties. CONCLUSIONS: The experiment results revealed a contrasting impact of mineral and organic fertilizers on the abundance of microbial genes related to the N-cycle in paddy soil.

Quantification of nitrogen cycle functional genes from viable archaea and bacteria in paddy soil

Pinzari Flavia;
2023

Abstract

AIMS: One of the main challenges of culture-independent soil microbiology is distinguishing the microbial community's viable fraction from dead matter. Propidium monoazide (PMA) binds the DNA of dead cells, preventing its amplification. This dye could represent a robust means to overcome the drawbacks of other selective methods, such as ribonucleic acid-based analyses. METHODS AND RESULTS: We quantified functional genes from viable archaea and bacteria in soil by combining the use of PMA and quantitative polymerase chain reaction. Four N-cycle-related functional genes (bacterial and archaeal ammonia monooxygenase, nitrate reductase, and nitrite reductase) were successfully quantified from the living fraction of bacteria and archaea of a paddy soil. The protocol was also tested with pure bacterial cultures and soils with different physical and chemical properties. CONCLUSIONS: The experiment results revealed a contrasting impact of mineral and organic fertilizers on the abundance of microbial genes related to the N-cycle in paddy soil.
2023
amoA
narG
nirK
detection
microorganisms
PMA
qPCR
soil
viable cells
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/453420
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact