Proton-exchange membranes (PEM), suitable for micro and small sized fuel cells, were obtained by blending sulfonated poly(ether ketone ketone) (SPEKK) polymers with different ionic exchange capacity (IEC). This approach was used to limit the amount of swelling caused by water sorption without significantly decreasing the proton conductivity of the membrane. In particular a membrane with a cocontinuous biphasic morphology was obtained by blending two SPEKKs, with respectively, an IEC equal to 1.2 and 2.08 in the weight ratio 60/40, casted from 5% (w/v) solutions in dimethylacetamide. The effect of a cocontinuous morphology on water sorption and proton conductivity in comparison to neat SPEKK was investigated. In the range of temperatures between 40 and 70 °C, which is typical for small and micro fuel cells conditions, it was found that the ratio of proton conductivity to water sorption could be maximized. This has been attributed to the presence of percolative pathways for proton transport provided by the cocontinuous morphology along with the constraint effect of the less sulfonated component on the overall capacity of swelling of the membrane

Polymer blend for fuel cells based on SPEKK: Effect of cocontinuous morphology on water sorption and proton conductivity

Marino Lavorgna;
2007

Abstract

Proton-exchange membranes (PEM), suitable for micro and small sized fuel cells, were obtained by blending sulfonated poly(ether ketone ketone) (SPEKK) polymers with different ionic exchange capacity (IEC). This approach was used to limit the amount of swelling caused by water sorption without significantly decreasing the proton conductivity of the membrane. In particular a membrane with a cocontinuous biphasic morphology was obtained by blending two SPEKKs, with respectively, an IEC equal to 1.2 and 2.08 in the weight ratio 60/40, casted from 5% (w/v) solutions in dimethylacetamide. The effect of a cocontinuous morphology on water sorption and proton conductivity in comparison to neat SPEKK was investigated. In the range of temperatures between 40 and 70 °C, which is typical for small and micro fuel cells conditions, it was found that the ratio of proton conductivity to water sorption could be maximized. This has been attributed to the presence of percolative pathways for proton transport provided by the cocontinuous morphology along with the constraint effect of the less sulfonated component on the overall capacity of swelling of the membrane
2007
MATERIALI COMPOSITI E BIOMEDICI
blends
fuel cells
ionomer
proton conductivity
swelling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/45360
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 12
social impact