Biosensors based on surface acoustic waves (SAWs) offer unique advantages due to their high sensitivity, real-time response capability, and label-free detection. The typical SAW modes are the Rayleigh mode and the shear-horizontal mode. Both present pros and cons for biosensing applications and generally need different substrates and device geometries to be efficiently generated. This study investigates and characterizes SAW resonator biosensors on lithium niobate in terms of modes generated and biosensing performance. It reveals the simultaneous presence of two typical SAW modes, the first around 1.6 GHz and the second around 1.9 GHz, differently polarized and clearly separated in frequency, which we refer to as slow and fast modes. The two modes are studied by numerical simulations and biosensing experiments with the glial-fibrillary-acidic-protein (GFAP) biomarker. The slow mode is generally more sensitive to changes in surface properties, such as temperature and mass changes, by a factor of about 1.4 with respect to the fast mode. © 2023 by the authors.
Mode Characterization and Sensitivity Evaluation of a Surface Acoustic Wave (SAW) Resonator Biosensor: Application to the Glial-Fibrillary-Acidic-Protein (GFAP) Biomarker Detection
Lunardelli Francesco;Cecchini Marco
;
2023
Abstract
Biosensors based on surface acoustic waves (SAWs) offer unique advantages due to their high sensitivity, real-time response capability, and label-free detection. The typical SAW modes are the Rayleigh mode and the shear-horizontal mode. Both present pros and cons for biosensing applications and generally need different substrates and device geometries to be efficiently generated. This study investigates and characterizes SAW resonator biosensors on lithium niobate in terms of modes generated and biosensing performance. It reveals the simultaneous presence of two typical SAW modes, the first around 1.6 GHz and the second around 1.9 GHz, differently polarized and clearly separated in frequency, which we refer to as slow and fast modes. The two modes are studied by numerical simulations and biosensing experiments with the glial-fibrillary-acidic-protein (GFAP) biomarker. The slow mode is generally more sensitive to changes in surface properties, such as temperature and mass changes, by a factor of about 1.4 with respect to the fast mode. © 2023 by the authors.File | Dimensione | Formato | |
---|---|---|---|
prod_490788-doc_204526.pdf
accesso aperto
Descrizione: Mode Characterization and Sensitivity Evaluation of a Surface Acoustic Wave (SAW) Resonator Biosensor
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.