In this paper we consider Anomaly Detection in the hyperspectral context, and we extend the popular RX detector, initially designed under the standard additive model, to the replacement model case. Indeed, in this more realistic framework, the target, if present, is supposed to replace a part of the background. We show how to estimate this background power variation to improve the standard RX scheme. The obtained Replacement RX (RRX) is shown to be closed-form and outperforms the standard RX on a real data benchmark experiment.

Anomaly detection for replacement model in hyperspectral imaging

Matteoli Stefania
Ultimo
2021

Abstract

In this paper we consider Anomaly Detection in the hyperspectral context, and we extend the popular RX detector, initially designed under the standard additive model, to the replacement model case. Indeed, in this more realistic framework, the target, if present, is supposed to replace a part of the background. We show how to estimate this background power variation to improve the standard RX scheme. The obtained Replacement RX (RRX) is shown to be closed-form and outperforms the standard RX on a real data benchmark experiment.
2021
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Anomaly detection
GLRT
Hyperspectral imagery
Replacement model
File in questo prodotto:
File Dimensione Formato  
F_VINCENT.pdf

accesso aperto

Descrizione: Anomaly detection for replacement model in hyperspectral imaging
Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 971.48 kB
Formato Adobe PDF
971.48 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/453876
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact