Aerosols are significant atmospheric constituents that modulate radiation and cloud processes. We evaluated 17-year aerosol profile trends in Barcelona, Spain, from lidar measurements. In summer aerosol reaches 5 km, while in the other seasons it exhibits clear exponential decay. Sahara dust transport affects all seasons, with winter layers above and others penetrating the boundary layer. This study informs the formation of haze and urban preservation strategies in the Mediterranean. The analysis puts in evidence that the averaged net radiative effect is of cooling at both surface level and top of the atmosphere.

Analysis of atmospheric aerosol properties using lidar measurements and their impact on radiative budget in Barcelona over the past 20 years

Lolli Simone;
2023

Abstract

Aerosols are significant atmospheric constituents that modulate radiation and cloud processes. We evaluated 17-year aerosol profile trends in Barcelona, Spain, from lidar measurements. In summer aerosol reaches 5 km, while in the other seasons it exhibits clear exponential decay. Sahara dust transport affects all seasons, with winter layers above and others penetrating the boundary layer. This study informs the formation of haze and urban preservation strategies in the Mediterranean. The analysis puts in evidence that the averaged net radiative effect is of cooling at both surface level and top of the atmosphere.
2023
Istituto di Metodologie per l'Analisi Ambientale - IMAA
9781510666894
Aerosol profiles
Aerosol Radiative Effects
Air Quality
Lidar Remote Sensing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/453960
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact