Sucrose, trehalose, and mannitol were colyophilized with lipase from Burkholderia cepacia and their effects on the activity and enantioselectitivity of the enzyme evaluated using as model reactions the transesterification between n-octanol or 6-methyl-5-hepten-2-ol with vinyl acetate. The lipase co-lyophilized with sugars showed an activity which was up to 4.7-fold higher (at a sugar/lipase ratio >= 20) than that observed without sugar. Analogously, lipase enantioselectivity, expressed as the enantiomeric ratio, increased up to 2.8-fold in the presence of sugars. The conformation of the lipase was investigated by means of Fourier transform infrared spectroscopy (FT/IR) in water and as lyophilized powder. The infrared spectra of lyophilized lipase in the presence and, even more so, in the absence of sugars were different from that of the enzyme in water. In particular, the band at around 1,654/cm, typically assigned to a-helix, was less intense in the Iyophilized samples. Nevertheless, the enzyme in the presence of sugars showed a decrease of the bands at 1,614-1,620/cm and at 1,680-1,695/cm that indicates a lower content of intermolecular P-sheets (typical of protein aggregates). Additionally the increase of the component at 1,546/cm in the amide 11 region is consistent with a hydrogen bond pattern of the enzyme more similar to that shown in water. These results suggest that although sugars are not able to fully preserve the native secondary structure, they might contribute to reduce the conformational changes caused by protein/protein interactions. These factors in combinations with others (e.g., ability to reduce deleterious interactions between the enzyme and inert supports) make sugars (both mono- and disaccharides) an interesting class of additives for improving the performance of biocatalysts in organic solvents.

Mono- and disaccharides enhance the activity and enantioselectivity of Burkholderia cepacia lipase in organic solvent but do not significantly affect its conformation

Secundo F;Carrea G
2005

Abstract

Sucrose, trehalose, and mannitol were colyophilized with lipase from Burkholderia cepacia and their effects on the activity and enantioselectitivity of the enzyme evaluated using as model reactions the transesterification between n-octanol or 6-methyl-5-hepten-2-ol with vinyl acetate. The lipase co-lyophilized with sugars showed an activity which was up to 4.7-fold higher (at a sugar/lipase ratio >= 20) than that observed without sugar. Analogously, lipase enantioselectivity, expressed as the enantiomeric ratio, increased up to 2.8-fold in the presence of sugars. The conformation of the lipase was investigated by means of Fourier transform infrared spectroscopy (FT/IR) in water and as lyophilized powder. The infrared spectra of lyophilized lipase in the presence and, even more so, in the absence of sugars were different from that of the enzyme in water. In particular, the band at around 1,654/cm, typically assigned to a-helix, was less intense in the Iyophilized samples. Nevertheless, the enzyme in the presence of sugars showed a decrease of the bands at 1,614-1,620/cm and at 1,680-1,695/cm that indicates a lower content of intermolecular P-sheets (typical of protein aggregates). Additionally the increase of the component at 1,546/cm in the amide 11 region is consistent with a hydrogen bond pattern of the enzyme more similar to that shown in water. These results suggest that although sugars are not able to fully preserve the native secondary structure, they might contribute to reduce the conformational changes caused by protein/protein interactions. These factors in combinations with others (e.g., ability to reduce deleterious interactions between the enzyme and inert supports) make sugars (both mono- and disaccharides) an interesting class of additives for improving the performance of biocatalysts in organic solvents.
2005
Istituto di Chimica del Riconoscimento Molecolare - ICRM - Sede Milano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/454143
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact