In this work, three machine learning methods were employed to predict carbon dioxide (CO2) equilibrium solubility in blended amine solutions consisting of ethanolamine (MEA), N,N-diethylethanolamine (DEEA) and methyldiethanolamine (MDEA). Three machine learning algorithms, Radial Basis Function Neural Network (RBFNN), Support Vector Machine Regression (SVR) and Extreme Gradient Boosting (XGBoost), were used to fit the experimental results. We found that the predicted values of the three models developed for the CO2 equilibrium solubility were in good agreement with the experimental results, and the comparison of the mean absolute percentage error (MAPE) and root mean square error (RMSE) results showed that XGBoost had the best prediction accuracy with the MAPE of less than 1%. Four different amine blends were then used to evaluate the expandability of the XGBoost model, namely MEA and 1-dimethylamino-2-propanol (1DMA2P), MDEA and piperazine (PZ), diethylenetriamine (DETA) and PZ, and MEA and triethanolamine (TEA); the MAPE between the experimental and predicted results were 0.30%, 0.91%, 0.86% and 1.63%, respectively. The results obtained showed that the XGBoost model has enormous potential for application in dealing with the CO2 equilibrium solubility in blended amine solutions.

A generic machine learning model for CO2 equilibrium solubility into blended amine solutions

Francesco Barzagli;
2024

Abstract

In this work, three machine learning methods were employed to predict carbon dioxide (CO2) equilibrium solubility in blended amine solutions consisting of ethanolamine (MEA), N,N-diethylethanolamine (DEEA) and methyldiethanolamine (MDEA). Three machine learning algorithms, Radial Basis Function Neural Network (RBFNN), Support Vector Machine Regression (SVR) and Extreme Gradient Boosting (XGBoost), were used to fit the experimental results. We found that the predicted values of the three models developed for the CO2 equilibrium solubility were in good agreement with the experimental results, and the comparison of the mean absolute percentage error (MAPE) and root mean square error (RMSE) results showed that XGBoost had the best prediction accuracy with the MAPE of less than 1%. Four different amine blends were then used to evaluate the expandability of the XGBoost model, namely MEA and 1-dimethylamino-2-propanol (1DMA2P), MDEA and piperazine (PZ), diethylenetriamine (DETA) and PZ, and MEA and triethanolamine (TEA); the MAPE between the experimental and predicted results were 0.30%, 0.91%, 0.86% and 1.63%, respectively. The results obtained showed that the XGBoost model has enormous potential for application in dealing with the CO2 equilibrium solubility in blended amine solutions.
2024
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Blended amines; CO2 absorption; Extreme gradient boosting (XGBoost); Machine learning (ML); Radial basis function neural network (RBFNN); Support vector machine (SVR)
File in questo prodotto:
File Dimensione Formato  
prod_490943-doc_204625.pdf

solo utenti autorizzati

Descrizione: A generic machine learning model for CO2 equilibrium solubility into blended amine solutions
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 8.13 MB
Formato Adobe PDF
8.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/454361
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact