Malnutrition is a serious and prevalent health problem in the older population, and especially in hospitalised or institutionalised subjects. Accurate and early risk detection is essential for malnutrition management and prevention. M-health services empowered with Artificial Intelligence (AI) may lead to important improvements in terms of a more automatic, objective, and continuous monitoring and assessment. Moreover, the latest Explainable AI (XAI) methodologies may make AI decisions interpretable and trustworthy for end users. This paper presents a novel AI framework for early and explainable malnutrition risk detection based on heterogeneous m-health data. We performed an extensive model evaluation including both subject-independent and personalised predictions, and the obtained results indicate Random Forest (RF) and Gradient Boosting as the best performing classifiers, especially when incorporating body composition assessment data. We also investigated several benchmark XAI methods to extract global model explanations. Modelspecific explanation consistency assessment indicates that each selected model privileges similar subsets of the most relevant predictors, with the highest agreement shown between SHapley Additive ExPlanations (SHAP) and feature permutation method. Furthermore, we performed a preliminary clinical validation to verify that the learned feature-output trends are compliant with the current evidence-based assessment.

Explainable AI for malnutrition risk prediction from m-Health and clinical data

Di Martino F;Delmastro F;
2023

Abstract

Malnutrition is a serious and prevalent health problem in the older population, and especially in hospitalised or institutionalised subjects. Accurate and early risk detection is essential for malnutrition management and prevention. M-health services empowered with Artificial Intelligence (AI) may lead to important improvements in terms of a more automatic, objective, and continuous monitoring and assessment. Moreover, the latest Explainable AI (XAI) methodologies may make AI decisions interpretable and trustworthy for end users. This paper presents a novel AI framework for early and explainable malnutrition risk detection based on heterogeneous m-health data. We performed an extensive model evaluation including both subject-independent and personalised predictions, and the obtained results indicate Random Forest (RF) and Gradient Boosting as the best performing classifiers, especially when incorporating body composition assessment data. We also investigated several benchmark XAI methods to extract global model explanations. Modelspecific explanation consistency assessment indicates that each selected model privileges similar subsets of the most relevant predictors, with the highest agreement shown between SHapley Additive ExPlanations (SHAP) and feature permutation method. Furthermore, we performed a preliminary clinical validation to verify that the learned feature-output trends are compliant with the current evidence-based assessment.
2023
Istituto di informatica e telematica - IIT
Malnutrition
m-Health
Machine Learning
Explainable AI
File in questo prodotto:
File Dimensione Formato  
prod_490986-doc_204644.pdf

accesso aperto

Descrizione: explainable
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/454404
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact