Microplastics (MPs) are a major environmental concern due to their possible impact on water pollution, wildlife, and the food chain. Reliable, rapid, and high-throughput screening of MPs from other components of a water sample after sieving and/or digestion is still a highly desirable goal to avoid cumbersome visual analysis by expert users under the optical microscope. Here, a new approach is presented that combines 3D coherent imaging with machine learning (ML) to achieve accurate and automatic detection of MPs in filtered water samples in a wide range at microscale. The water pretreatment process eliminates sediments and aggregates that fall out of the analyzed range. However, it is still necessary to clearly distinguish MPs from marine microalgae. Here, it is shown that, by defining a novel set of distinctive "holographic features," it is possible to accurately identify MPs within the defined analysis range. The process is specifically tailored for characterizing the MPs' "holographic signatures," thus boosting the classification performance and reaching accuracy higher than 99% in classifying thousands of items. The ML approach in conjunction with holographic coherent imaging is able to identify MPs independently from their morphology, size, and different types of plastic materials.

Microplastic Identification via Holographic Imaging and Machine Learning

Vittorio Bianco;Pasquale Memmolo;Francesco Merola;Melania Paturzo;Cosimo Distante;Pietro Ferraro
2019

Abstract

Microplastics (MPs) are a major environmental concern due to their possible impact on water pollution, wildlife, and the food chain. Reliable, rapid, and high-throughput screening of MPs from other components of a water sample after sieving and/or digestion is still a highly desirable goal to avoid cumbersome visual analysis by expert users under the optical microscope. Here, a new approach is presented that combines 3D coherent imaging with machine learning (ML) to achieve accurate and automatic detection of MPs in filtered water samples in a wide range at microscale. The water pretreatment process eliminates sediments and aggregates that fall out of the analyzed range. However, it is still necessary to clearly distinguish MPs from marine microalgae. Here, it is shown that, by defining a novel set of distinctive "holographic features," it is possible to accurately identify MPs within the defined analysis range. The process is specifically tailored for characterizing the MPs' "holographic signatures," thus boosting the classification performance and reaching accuracy higher than 99% in classifying thousands of items. The ML approach in conjunction with holographic coherent imaging is able to identify MPs independently from their morphology, size, and different types of plastic materials.
2019
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
microplastics
holography
microscopy
machine learning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/454422
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact