We investigate a special class of cellular automata (CA) evolving in a environment filled by an electromagnetic wave. The rules of the Conway's Game of Life are modified to account for the ability to retrieve life-sustenance from the field energy. Light-induced self-structuring and self-healing abilities and various dynamic phases are displayed by the CA. Photo-driven genetic selection and the nonlinear feedback of the CA on the electromagnetic field are included in the model, and there are evidences of self-organized light-localization processes. The evolution of the electromagnetic field is based on the Finite Difference Time Domain (FDTD) approach. Applications are envisaged in evolutionary biology, artificial life, DNA replication, swarming, optical tweezing and field-driven soft-matter.
The Enlightened Game of Life
Claudio Conti
2010
Abstract
We investigate a special class of cellular automata (CA) evolving in a environment filled by an electromagnetic wave. The rules of the Conway's Game of Life are modified to account for the ability to retrieve life-sustenance from the field energy. Light-induced self-structuring and self-healing abilities and various dynamic phases are displayed by the CA. Photo-driven genetic selection and the nonlinear feedback of the CA on the electromagnetic field are included in the model, and there are evidences of self-organized light-localization processes. The evolution of the electromagnetic field is based on the Finite Difference Time Domain (FDTD) approach. Applications are envisaged in evolutionary biology, artificial life, DNA replication, swarming, optical tweezing and field-driven soft-matter.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.